Development of empirical correlations to predict the secondary droplet size of impacting droplets onto heated surfaces

Development of empirical correlations to predict the secondary droplet size of impacting droplets... The present article reports an experimental analysis of the mechanisms of secondary atomization which occur at the impact of individual droplets onto heated targets. The experiments follow those reported in a previous article (Moreira et al. 2007) and encompass the use of different liquids and impact conditions. An image analysis system is combined with a phase Doppler interferometer to measure extended size distributions, which cover the full range of diameters generated at all heat transfer regimes. The results evidence that disintegration mechanisms depend on the heat transfer regimes; therefore, a universal relation cannot be devised for the outcome of droplet impact. Analysis shows that droplets impacting within the nucleate-boiling regime break-up by a thermal-induced mechanism associated with the vapour pressure at bubble nucleation sites, combined with liquid surface tension. On the other hand, within the film-boiling regime, disintegration is associated with radial disruption of the rim at the early instants after impact, as in non-heated targets, and with the rupture of the ligaments of the cellular structures. Functional relations available at the literature, mostly developed for impacts onto non-heated surfaces, are well fitted to the experimental results obtained within the film-boiling regime, since the break-up mechanisms are qualitatively similar. On the other hand, such relations cannot predict the secondary atomization occurring within the nucleate-boiling regime, as the break-up mechanisms within this regime have significantly different characteristics. In this context, the present article recognizes the relevance of the relations devised for ‘cold impacts’, to fit the size of secondary droplets within the film-boiling regime, as the correlation formulated here has a similar form: SMD/D 0 = f(We, Re) ~ A 1 We N −0.6 Re −0.23 and proposes a new correlation for impacts within the nucleate-boiling regime: SMD/D 0 = f(We, Re, Ja) ~ A 2 We N −0.14 Re −011 Ja −03. These correlations are observed to hold for impacts onto rough surfaces with dimensionless roughness R a/D 0 smaller than 2E-3, but not for larger roughness amplitudes, for which the data are quite scattered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Development of empirical correlations to predict the secondary droplet size of impacting droplets onto heated surfaces

Loading next page...
 
/lp/springer_journal/development-of-empirical-correlations-to-predict-the-secondary-droplet-E6b0FmtIFO
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0719-1
Publisher site
See Article on Publisher Site

Abstract

The present article reports an experimental analysis of the mechanisms of secondary atomization which occur at the impact of individual droplets onto heated targets. The experiments follow those reported in a previous article (Moreira et al. 2007) and encompass the use of different liquids and impact conditions. An image analysis system is combined with a phase Doppler interferometer to measure extended size distributions, which cover the full range of diameters generated at all heat transfer regimes. The results evidence that disintegration mechanisms depend on the heat transfer regimes; therefore, a universal relation cannot be devised for the outcome of droplet impact. Analysis shows that droplets impacting within the nucleate-boiling regime break-up by a thermal-induced mechanism associated with the vapour pressure at bubble nucleation sites, combined with liquid surface tension. On the other hand, within the film-boiling regime, disintegration is associated with radial disruption of the rim at the early instants after impact, as in non-heated targets, and with the rupture of the ligaments of the cellular structures. Functional relations available at the literature, mostly developed for impacts onto non-heated surfaces, are well fitted to the experimental results obtained within the film-boiling regime, since the break-up mechanisms are qualitatively similar. On the other hand, such relations cannot predict the secondary atomization occurring within the nucleate-boiling regime, as the break-up mechanisms within this regime have significantly different characteristics. In this context, the present article recognizes the relevance of the relations devised for ‘cold impacts’, to fit the size of secondary droplets within the film-boiling regime, as the correlation formulated here has a similar form: SMD/D 0 = f(We, Re) ~ A 1 We N −0.6 Re −0.23 and proposes a new correlation for impacts within the nucleate-boiling regime: SMD/D 0 = f(We, Re, Ja) ~ A 2 We N −0.14 Re −011 Ja −03. These correlations are observed to hold for impacts onto rough surfaces with dimensionless roughness R a/D 0 smaller than 2E-3, but not for larger roughness amplitudes, for which the data are quite scattered.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 5, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off