Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers from the chloroplast genome of Glycyrrhiza species

Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM)... Licorice (Glycyrrhiza glabra) is an important medicinal crop often used as health foods or medicine worldwide. The molecular genetics of licorice is under scarce owing to lack of molecular markers. Here, we have developed cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers based on single nucleotide polymorphisms (SNP) by comparing the chloroplast genomes of two Glycyrrhiza species (G. glabra and G. lepidota). The CAPS and HRM markers were tested for diversity analysis with 24 Glycyrrhiza accessions. The restriction profiles generated with CAPS markers classified the accessions (2–4 genotypes) and melting curves (2–3) were obtained from the HRM markers. The number of alleles and major allele frequency were 2−6 and 0.31–0.92, respectively. The genetic distance and polymorphism information content values were 0.16–0.76 and 0.15–0.72, respectively. The phylogenetic relationships among the 24 accessions were estimated using a dendrogram, which classified them into four clades. Except clade III, the remaining three clades included the same species, confirming interspecies genetic correlation. These 18 CAPS and HRM markers might be helpful for genetic diversity assessment and rapid identification of licorice species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png 3 Biotech Springer Journals

Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers from the chloroplast genome of Glycyrrhiza species

Loading next page...
 
/lp/springer_journal/development-of-cleaved-amplified-polymorphic-sequence-caps-and-high-0J030fRJQX
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Agriculture; Cancer Research; Bioinformatics; Stem Cells; Biomaterials
ISSN
2190-572X
eISSN
2190-5738
D.O.I.
10.1007/s13205-018-1245-8
Publisher site
See Article on Publisher Site

Abstract

Licorice (Glycyrrhiza glabra) is an important medicinal crop often used as health foods or medicine worldwide. The molecular genetics of licorice is under scarce owing to lack of molecular markers. Here, we have developed cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers based on single nucleotide polymorphisms (SNP) by comparing the chloroplast genomes of two Glycyrrhiza species (G. glabra and G. lepidota). The CAPS and HRM markers were tested for diversity analysis with 24 Glycyrrhiza accessions. The restriction profiles generated with CAPS markers classified the accessions (2–4 genotypes) and melting curves (2–3) were obtained from the HRM markers. The number of alleles and major allele frequency were 2−6 and 0.31–0.92, respectively. The genetic distance and polymorphism information content values were 0.16–0.76 and 0.15–0.72, respectively. The phylogenetic relationships among the 24 accessions were estimated using a dendrogram, which classified them into four clades. Except clade III, the remaining three clades included the same species, confirming interspecies genetic correlation. These 18 CAPS and HRM markers might be helpful for genetic diversity assessment and rapid identification of licorice species.

Journal

3 BiotechSpringer Journals

Published: Apr 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off