Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures

Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures In this paper, methods for developing isoparametric tetrahedral finite elements (FE) based on the absolute nodal coordinate formulation (ANCF) are presented. The proposed ANCF tetrahedral elements have twelve coordinates per node that include three position and nine gradient coordinates. The fundamental differences between the coordinate parametrizations used for conventional finite elements and the coordinate parametrizations employed for the proposed ANCF tetrahedral elements are discussed. Two different parametric definitions are introduced: a volume parametrization based on coordinate lines along the sides of the tetrahedral element in the straight (un-deformed) configuration and a Cartesian parametrization based on coordinate lines directed along the global axes. The volume parametrization facilitates the development of a concise set of shape functions in a closed form, and the Cartesian parametrization serves as a unique standard for the element assembly. A linear mapping based on the Bezier geometry is used to systematically define the cubic position fields of ANCF tetrahedral elements: the complete polynomial-based eight-node mixed-coordinate and the incomplete polynomial-based four-node ANCF tetrahedral elements. An element transformation matrix that defines the relationship between the volume and Cartesian parametrizations is developed and used to convert the parametric gradients to structure gradients, thereby allowing for the use of a standard FE assembly procedure. A general computational approach is employed to formulate the generalized inertia, external, and elastic forces. The performance of the proposed ANCF tetrahedral elements is evaluated by comparison with the conventional linear and quadratic tetrahedral elements and also with the ANCF brick element. In the case of small deformations, the numerical results obtained show that all the tetrahedral elements considered can correctly produce rigid body motion. In the case of large deformations, on the other hand, the solutions of all the elements considered are in good agreement, provided that appropriate mesh sizes are used. Nonlinear Dynamics Springer Journals

Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media B.V.
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial