Development of an updated geothermal reservoir conceptual model for NW Sabalan geothermal field, Iran

Development of an updated geothermal reservoir conceptual model for NW Sabalan geothermal field,... In this paper, a conceptual model has been developed for NW Sabalan geothermal field using exploration indicators. These indicators include the data and results of subsurface and surface investigations comprising geology, geophysics , hydro-geochemistry, hydrology and temperature and pressure distribution. The subsurface information was obtained from 10 deep exploration wells as well as from the results of previous studies in this field. All available data together with the stratigraphy and 1:20,000 geological map covering the study area were combined to produce a two-dimensional geological cross section. Also, a subsurface three-dimensional geological model was developed using available drilling logs. NW Sabalan geothermal field is one of the 18 detected potential areas in Iran that is located in Northwest of the country. This field includes a deep geothermal reservoir with a temperature range of 230–242 °C. The reservoir is covered by a cap rock with an approximate thickness of 500 m. There are four major geological units identified in the study area including Quaternary alluvium, fan and terrace deposits; Pleistocene post-caldera trachyandesitic Flows; Pleistocene syn-caldera trachydacitic to trachyandesitic domes and Pliocene pre-caldera trachyandesitic lavas, tuffs and pyroclastic. A hydraulic conductivity zone has been assessed by magnetotelluric surveys at deeper zones, suggesting that the main outflow direction is towards west and north of the area. The fluid chemistry is consistent with high chloride, neutral pH and immature liquids that partially equilibrated with host rock and they are classified as mixed water. The results of exploration and geological studies during a 10-year period have been integrated together to build a new overall conceptual model of the field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geothermal Energy Springer Journals

Development of an updated geothermal reservoir conceptual model for NW Sabalan geothermal field, Iran

Loading next page...
 
/lp/springer_journal/development-of-an-updated-geothermal-reservoir-conceptual-model-for-nw-bHQD8y005N
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Renewable and Green Energy; Geoecology/Natural Processes
eISSN
2195-9706
D.O.I.
10.1186/s40517-017-0073-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial