Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data

Development of an agricultural crops spectral library and classification of crops at cultivar... In the context of a growing interest in remote sensing for precision agriculture applications, the utility of space-borne hyperspectral imaging for the development of a crop-specific spectral library and automatic identification and classification of three cultivars for each of rice (Oryza sativa L.), chilli (Capsicum annuum L.), sugarcane (Saccharum officinarum L.) and cotton (Gossipium hirsutum L.) crops have been investigated in this study. The classification of crops at cultivar level using two spectral libraries developed using hyperspectral reflectance data at canopy scale (in-situ hyperspectral measurements) and at pixel scale (Hyperion data) has shown promising results with 86.5 and 88.8% overall classification accuracy, respectively. This observation highlights the possible integration of in-situ hyperspectral measurements with space-borne hyperspectral remote sensing data for automatic identification and discrimination of various crop cultivars. However, considerable spectral similarity is observed between cultivars of rice and sugarcane crops which may pose problems in the accurate identification of various crop cultivars. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data

Loading next page...
 
/lp/springer_journal/development-of-an-agricultural-crops-spectral-library-and-79H5Fd6Hho
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-007-9037-x
Publisher site
See Article on Publisher Site

Abstract

In the context of a growing interest in remote sensing for precision agriculture applications, the utility of space-borne hyperspectral imaging for the development of a crop-specific spectral library and automatic identification and classification of three cultivars for each of rice (Oryza sativa L.), chilli (Capsicum annuum L.), sugarcane (Saccharum officinarum L.) and cotton (Gossipium hirsutum L.) crops have been investigated in this study. The classification of crops at cultivar level using two spectral libraries developed using hyperspectral reflectance data at canopy scale (in-situ hyperspectral measurements) and at pixel scale (Hyperion data) has shown promising results with 86.5 and 88.8% overall classification accuracy, respectively. This observation highlights the possible integration of in-situ hyperspectral measurements with space-borne hyperspectral remote sensing data for automatic identification and discrimination of various crop cultivars. However, considerable spectral similarity is observed between cultivars of rice and sugarcane crops which may pose problems in the accurate identification of various crop cultivars.

Journal

Precision AgricultureSpringer Journals

Published: Aug 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off