Development of a two-stage washing and biodegradation system to remediate octachlorinated dibenzo-p-dioxin-contaminated soils

Development of a two-stage washing and biodegradation system to remediate octachlorinated... A two-stage system for octachlorinated dibenzo-p-dioxin (OCDD)-contaminated soil remediation was developed. Soil washing using emulsified oil (EO) was applied in the first stage for OCDD extraction followed by the second stage of bioremediation using P. mendocina NSYSU for remaining OCDD biodegradation. The major tasks included (1) determination of optimal soil washing conditions for OCDD extraction by EO, (2) evaluation of feasibility of OCDD biodegradation by P. mendocina NSYSU under aerobic cometabolic conditions using EO as the primary substrate, and (3) assessment of the effectiveness of OCDD removal using the two-stage system. During the soil washing stage, EO with two different oil-to-water ratios (1:50 and 1:200) and pore volumes were tested with initial soil OCDD concentration of 21,000 µg/kg. Results indicate that EO could effectively improve the solubility and desorption of OCDD in soils. Up to 74% of OCDD removal could be obtained after washing with 60 PVs of EO and dilution factor of 50. After the soil washing process, enriched P. mendocina NSYSU solution was added into the reactor to enhance the aerobic biodegradation of remaining OCDD in soils. P. mendocina NSYSU could use adsorbed EO globules as substrates and caused significant OCDD degradation via the aerobic cometabolic mechanism. Approximately 82% of the remaining OCDD could be removed after 50 days of operation, and P. mendocina NSYSU played important roles in OCDD biodegradation. Up to 87% of OCDD was removed through the EO washing and biodegradation process. The two-stage system is a potential technology to remediate dioxin-contaminated soils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Environmental Science and Technology Springer Journals

Development of a two-stage washing and biodegradation system to remediate octachlorinated dibenzo-p-dioxin-contaminated soils

Loading next page...
 
/lp/springer_journal/development-of-a-two-stage-washing-and-biodegradation-system-to-0c5gqOU55T
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Islamic Azad University (IAU)
Subject
Environment; Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology
ISSN
1735-1472
eISSN
1735-2630
D.O.I.
10.1007/s13762-017-1286-2
Publisher site
See Article on Publisher Site

Abstract

A two-stage system for octachlorinated dibenzo-p-dioxin (OCDD)-contaminated soil remediation was developed. Soil washing using emulsified oil (EO) was applied in the first stage for OCDD extraction followed by the second stage of bioremediation using P. mendocina NSYSU for remaining OCDD biodegradation. The major tasks included (1) determination of optimal soil washing conditions for OCDD extraction by EO, (2) evaluation of feasibility of OCDD biodegradation by P. mendocina NSYSU under aerobic cometabolic conditions using EO as the primary substrate, and (3) assessment of the effectiveness of OCDD removal using the two-stage system. During the soil washing stage, EO with two different oil-to-water ratios (1:50 and 1:200) and pore volumes were tested with initial soil OCDD concentration of 21,000 µg/kg. Results indicate that EO could effectively improve the solubility and desorption of OCDD in soils. Up to 74% of OCDD removal could be obtained after washing with 60 PVs of EO and dilution factor of 50. After the soil washing process, enriched P. mendocina NSYSU solution was added into the reactor to enhance the aerobic biodegradation of remaining OCDD in soils. P. mendocina NSYSU could use adsorbed EO globules as substrates and caused significant OCDD degradation via the aerobic cometabolic mechanism. Approximately 82% of the remaining OCDD could be removed after 50 days of operation, and P. mendocina NSYSU played important roles in OCDD biodegradation. Up to 87% of OCDD was removed through the EO washing and biodegradation process. The two-stage system is a potential technology to remediate dioxin-contaminated soils.

Journal

International Journal of Environmental Science and TechnologySpringer Journals

Published: Feb 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off