Development of a turbulent boundary layer after a step from smooth to rough surface

Development of a turbulent boundary layer after a step from smooth to rough surface The flow developing downstream of a step change from smooth to rough surface condition is studied in the light of Townsend’s wall similarity hypothesis. Previous studies seem to support the hypothesis for channel and pipe flows, but there are considerable controversies about its application to boundary layers and in particular to surface roughness formed by spanwise bars. It has been suggested that this controversy arises from insufficient separation of scales between the boundary layer thickness and the roughness length scale. An experimental investigation has therefore been undertaken where the flow evolves from a fully developed smooth wall boundary layer at high Reynolds numbers over a step in surface roughness (Re θ = 13,400 at the step). The flow is mapped through the development of the internal layer until the flow is fully developed over the rough wall. The internal layer is found to grow as δ ∼ X 0.73, and after about 15 boundary layer thicknesses at the step, the internal layer has reached the outer edge of the incoming layer. At the last rough wall measurement station, the Reynolds number has grown to Re θ ≈ 32,600 and the ratio of boundary layer to roughness length scales is δ/k ≈ 140. The outer layer differences between the smooth and the rough wall data were found to be sufficiently small to conclude that for this setup the Townsend’s wall similarity hypothesis appears to hold. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Development of a turbulent boundary layer after a step from smooth to rough surface

Loading next page...
 
/lp/springer_journal/development-of-a-turbulent-boundary-layer-after-a-step-from-smooth-to-FK2yYtMD0n
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1167-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial