Development of a sensitive experimental set-up for LIF fuel wall film measurements in a pressure vessel

Development of a sensitive experimental set-up for LIF fuel wall film measurements in a pressure... This paper focusses on fundamental investigations of fuel wall films, which are formed when the spray impinges on the piston or cylinder walls. To reproduce the wide range of operating conditions within homogeneously charged gasoline direct-injection engines, it is necessary to use a film thickness measurement method, which can be applied inside a high-pressure, high-temperature vessel. Hence, we developed a method based on laser-induced fluorescence that reaches: a precision better than 1 µm, a geometric resolution of 31 µm and a practical applicability for wall film thicknesses smaller 80 µm. To obtain accurate film thickness results, we provide a detailed description of the selection of the surrogate fuel isooctane with 3-pentanone as fluorescence tracer and the resulting assembly of the excitation source, beam expander, filters, camera and the essential image processing. Furthermore, advantages and disadvantages of other possible solutions are discussed. Earlier publications provide only little information about the accuracy of their calibration and measurement procedures. Therefore, we tested and compared three basic calibration methods to each other and provide an analysis of possible errors, such as the influence of the preferential evaporation of 3-pentanone. Finally, images of resulting wall films are presented, and practical considerations for the execution of the measurements like recording timings are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Development of a sensitive experimental set-up for LIF fuel wall film measurements in a pressure vessel

Loading next page...
 
/lp/springer_journal/development-of-a-sensitive-experimental-set-up-for-lif-fuel-wall-film-tsqWJOSUwH
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1971-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial