Development of a plant-derived subunit vaccine candidate against hepatitis C virus

Development of a plant-derived subunit vaccine candidate against hepatitis C virus Hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis with over 180 million cases worldwide. Vaccine development for HCV has been difficult. Presently, the virus cannot be grown in tissue culture and there is no vaccine or effective therapy against this virus. In this research, we describe the development of an experimental plant-derived subunit vaccine against HCV. A tobamoviral vector was engineered to encode a consensus sequence of hypervariable region 1 (HVR1), a potential neutralizing epitope of HCV, genetically fused to the C-terminal of the B subunit of cholera toxin (CTB). This epitope was selected from among the amino acid sequences of HVR1 “mimotopes” previously derived by phage display technology. The nucleotide sequence encoding this epitope was designed utilizing optimal plant codons. This mimotope is capable of inducing cross-neutralizing antibodies against different variants of the virus. Plants infected with recombinant tobacco mosaic virus (TMV) engineered to express the HVR1/CTB chimeric protein, contained intact TMV particles and produced the HVR1 consensus peptide fused to the functionally active, pentameric B subunit of cholera toxin. Plant-derived HVR1/CTB reacted with HVR1-specific monoclonal antibodies and immune sera from individuals infected with virus from four of the major genotypes of HCV. Intranasal immunization of mice with a crude plant extract containing the recombinant HVR1/CTB protein elicited both anti-CTB serum antibody and anti-HVR1 serum antibody which specifically bound to HCV virus-like particles. Using plant-virus transient expression to produce this unique chimeric antigen will facilitate the development and production of an experimental HCV vaccine. A plant-derived recombinant HCV vaccine can potentially reduce expenses normally associated with production and delivery of conventional vaccines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Development of a plant-derived subunit vaccine candidate against hepatitis C virus

Loading next page...
 
/lp/springer_journal/development-of-a-plant-derived-subunit-vaccine-candidate-against-FvuXTVQA2P
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050070008
Publisher site
See Article on Publisher Site

Abstract

Hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis with over 180 million cases worldwide. Vaccine development for HCV has been difficult. Presently, the virus cannot be grown in tissue culture and there is no vaccine or effective therapy against this virus. In this research, we describe the development of an experimental plant-derived subunit vaccine against HCV. A tobamoviral vector was engineered to encode a consensus sequence of hypervariable region 1 (HVR1), a potential neutralizing epitope of HCV, genetically fused to the C-terminal of the B subunit of cholera toxin (CTB). This epitope was selected from among the amino acid sequences of HVR1 “mimotopes” previously derived by phage display technology. The nucleotide sequence encoding this epitope was designed utilizing optimal plant codons. This mimotope is capable of inducing cross-neutralizing antibodies against different variants of the virus. Plants infected with recombinant tobacco mosaic virus (TMV) engineered to express the HVR1/CTB chimeric protein, contained intact TMV particles and produced the HVR1 consensus peptide fused to the functionally active, pentameric B subunit of cholera toxin. Plant-derived HVR1/CTB reacted with HVR1-specific monoclonal antibodies and immune sera from individuals infected with virus from four of the major genotypes of HCV. Intranasal immunization of mice with a crude plant extract containing the recombinant HVR1/CTB protein elicited both anti-CTB serum antibody and anti-HVR1 serum antibody which specifically bound to HCV virus-like particles. Using plant-virus transient expression to produce this unique chimeric antigen will facilitate the development and production of an experimental HCV vaccine. A plant-derived recombinant HCV vaccine can potentially reduce expenses normally associated with production and delivery of conventional vaccines.

Journal

Archives of VirologySpringer Journals

Published: Dec 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off