Development of a novel real-time PCR-based strategy for simple and rapid molecular pathotyping of Newcastle disease virus

Development of a novel real-time PCR-based strategy for simple and rapid molecular pathotyping of... A novel real-time PCR strategy was applied to simultaneously detect and to discriminate low-pathogenic lentogenic and virulent meso/velogenic Newcastle disease virus (NDV). The pathotyping is achieved by a three-step semi-nested PCR. A pre-amplification of the cleavage site (CS) region of the F gene is followed by a two-level duplex real-time PCR directly targeting the CS, combining detection and pathotyping in a single tube. A wide range of NDV isolates spanning all genotypes were successfully detected and pathotyped. Clinical samples from outbreaks in Sweden in 2010 that were positive by the novel PCR method were also successfully pathotyped. The method is time-saving, reduces labour and costs and provides opportunities for rapid diagnosis at remote locations and in the field. Since the same strategy was also recently applied to avian influenza virus pathotyping, it shows promise of finding broad utility in diagnostics of infectious diseases caused by different RNA viruses in various hosts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Development of a novel real-time PCR-based strategy for simple and rapid molecular pathotyping of Newcastle disease virus

Loading next page...
 
/lp/springer_journal/development-of-a-novel-real-time-pcr-based-strategy-for-simple-and-TPkjYE1Czt
Publisher
Springer Vienna
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1231-0
Publisher site
See Article on Publisher Site

Abstract

A novel real-time PCR strategy was applied to simultaneously detect and to discriminate low-pathogenic lentogenic and virulent meso/velogenic Newcastle disease virus (NDV). The pathotyping is achieved by a three-step semi-nested PCR. A pre-amplification of the cleavage site (CS) region of the F gene is followed by a two-level duplex real-time PCR directly targeting the CS, combining detection and pathotyping in a single tube. A wide range of NDV isolates spanning all genotypes were successfully detected and pathotyped. Clinical samples from outbreaks in Sweden in 2010 that were positive by the novel PCR method were also successfully pathotyped. The method is time-saving, reduces labour and costs and provides opportunities for rapid diagnosis at remote locations and in the field. Since the same strategy was also recently applied to avian influenza virus pathotyping, it shows promise of finding broad utility in diagnostics of infectious diseases caused by different RNA viruses in various hosts.

Journal

Archives of VirologySpringer Journals

Published: May 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off