Development of a novel electrochemical biosensor based on catalytic properties of adenosine deaminase immobilized on graphene oxide/carboxymethyl chitosan/multi-wall carbon nanotube platform

Development of a novel electrochemical biosensor based on catalytic properties of adenosine... A new type of biosensor was designed based on Adenosine deaminase (ADA) immobilized on graphene oxide (GO)/carboxymethyl chitosan (CMC)/multi-wall carbon nanotube (MWCNT) platform nanostructure, fabricated and successfully applied (utilized) in Adenosine detection. Square wave voltammetry was used to study the biosensor catalytic activity. Morphological analysis of the nanostructure was performed by AFM and SEM methods. The results provided here proved that utilizing GO/CMC/MWCNT leads to effective immobilization of ADA which was confirmed by the long term stability of the biosensor during examined intervals. The immobilized ADA activity was examined and the kinetic parameters (K m and V max) were found to be 47.5 μM and 5.8 μM min−1, respectively. Furthermore, benznidazole was introduced as a potent ADA inhibitor using virtual screening. Outstanding inhibition characteristics of benznidazole was observed against ADA. ADA inhibition by benznidazole was non-competitive with the inhibition constant of 0.42 μM. Such an interesting template with an easy preparation process with low cost can provide a novel matrix for developing biosensors and biocatalysts based on enzyme immobilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Development of a novel electrochemical biosensor based on catalytic properties of adenosine deaminase immobilized on graphene oxide/carboxymethyl chitosan/multi-wall carbon nanotube platform

Loading next page...
 
/lp/springer_journal/development-of-a-novel-electrochemical-biosensor-based-on-catalytic-Sko03WT9xz
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427214010108
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial