Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses

Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of... Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses

Loading next page...
 
/lp/springer_journal/development-of-a-molecular-beacon-based-multi-allelic-real-time-rt-pcr-nhtMzPMthZ
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0906-7
Publisher site
See Article on Publisher Site

Abstract

Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off