Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics

Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics Diffuse brain injuries are caused by excessive brain deformation generated primarily by rapid rotational head motion. Metrics that describe the severity of brain injury based on head motion often do not represent the governing physics of brain deformation, rendering them ineffective over a broad range of head impact conditions. This study develops a brain injury metric based on the response of a second-order mechanical system, and relates rotational head kinematics to strain-based brain injury metrics: maximum principal strain (MPS) and cumulative strain damage measure (CSDM). This new metric, universal brain injury criterion (UBrIC), is applicable over a broad range of kinematics encountered in automotive crash and sports. Efficacy of UBrIC was demonstrated by comparing it to MPS and CSDM predicted in 1600 head impacts using two different finite element (FE) brain models. Relative to existing metrics, UBrIC had the highest correlation with the FE models, and performed better in most impact conditions. While UBrIC provides a reliable measurement for brain injury assessment in a broad range of head impact conditions, and can inform helmet and countermeasure design, an injury risk function was not incorporated into its current formulation until validated strain-based risk functions can be developed and verified against human injury data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Biomedical Engineering Springer Journals

Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics

Loading next page...
 
/lp/springer_journal/development-of-a-metric-for-predicting-brain-strain-responses-using-6wzYvJE1ct
Publisher
Springer US
Copyright
Copyright © 2018 by Biomedical Engineering Society
Subject
Biomedicine; Biomedicine, general; Biomedical Engineering; Biological and Medical Physics, Biophysics; Classical Mechanics; Biochemistry, general
ISSN
0090-6964
eISSN
1573-9686
D.O.I.
10.1007/s10439-018-2015-9
Publisher site
See Article on Publisher Site

Abstract

Diffuse brain injuries are caused by excessive brain deformation generated primarily by rapid rotational head motion. Metrics that describe the severity of brain injury based on head motion often do not represent the governing physics of brain deformation, rendering them ineffective over a broad range of head impact conditions. This study develops a brain injury metric based on the response of a second-order mechanical system, and relates rotational head kinematics to strain-based brain injury metrics: maximum principal strain (MPS) and cumulative strain damage measure (CSDM). This new metric, universal brain injury criterion (UBrIC), is applicable over a broad range of kinematics encountered in automotive crash and sports. Efficacy of UBrIC was demonstrated by comparing it to MPS and CSDM predicted in 1600 head impacts using two different finite element (FE) brain models. Relative to existing metrics, UBrIC had the highest correlation with the FE models, and performed better in most impact conditions. While UBrIC provides a reliable measurement for brain injury assessment in a broad range of head impact conditions, and can inform helmet and countermeasure design, an injury risk function was not incorporated into its current formulation until validated strain-based risk functions can be developed and verified against human injury data.

Journal

Annals of Biomedical EngineeringSpringer Journals

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off