Development of a local continuous sampling probe for the equivalence air–fuel ratio measurement. Application to spark ignition engine

Development of a local continuous sampling probe for the equivalence air–fuel ratio... This paper is a contribution to the development of an original technique for measuring the in-cylinder equivalence air–fuel ratio. The main objective was to construct an instrument able to furnish instantaneous values of hydrocarbon concentration for many consecutive cycles at a definite location, especially at the spark plug location. The probe is based on a hot-wire-like apparatus, but involves catalytic oxidation on the wire surface in order to be sensitive to the hydrocarbon concentration. In this paper, we present the different steps needed to develop and validate the probe. The first step focuses on the geometric configuration to simplify as much as possible the mass transfer phenomena on the wire. The second step is a parametric study to evaluate the sensitivity, confidence and lifetime of the wire. By physical analysis, we propose a relationship between the electrical signal and the air–fuel equivalence ratio of the sampled gases. The third step is the application of the probe to in-cylinder motored engine measurements, which confirms the ability of the technique to characterise, quantitatively, the homogeneity of the air–fuel mixture, especially during the compression stroke. This work points out that the global sensitivity is estimated at 4 V per unit of equivalence air–fuel ratio and the response time is estimated at about 400 μs. The equivalence air–fuel ratio range is from pure air to 1.2. Experiments show that it is necessary to calibrate the system before use because of the existence of multiple catalysis states. The probe presents advantages associated with its simplicity, its low cost and its direct engine application without any modifications. Experiments in Fluids Springer Journals

Development of a local continuous sampling probe for the equivalence air–fuel ratio measurement. Application to spark ignition engine

Loading next page...
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial