Development of a high-speed UV particle image velocimetry technique and application for measurements in internal combustion engines

Development of a high-speed UV particle image velocimetry technique and application for... A flexible, high-frame rate particle image velocimetry technique that can be applied to operating internal combustion engines in highly luminous combustion situations was developed. Two high-repetition rate diode-pumped Nd:YAG lasers operated at 355 nm and a CMOS camera were used to devise a system that allowed measurements of velocity fields near the spark plug in a firing engine at a rate of 6 kHz for 500 consecutive cycles. The 6 kHz acquisition rate enables recording one velocity field every other crank angle at 2,000 RPM engine speed. Sample results such as individual and average flow fields and kinetic energy evolutions are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Development of a high-speed UV particle image velocimetry technique and application for measurements in internal combustion engines

Loading next page...
 
/lp/springer_journal/development-of-a-high-speed-uv-particle-image-velocimetry-technique-8s20lFk99F
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0535-z
Publisher site
See Article on Publisher Site

Abstract

A flexible, high-frame rate particle image velocimetry technique that can be applied to operating internal combustion engines in highly luminous combustion situations was developed. Two high-repetition rate diode-pumped Nd:YAG lasers operated at 355 nm and a CMOS camera were used to devise a system that allowed measurements of velocity fields near the spark plug in a firing engine at a rate of 6 kHz for 500 consecutive cycles. The 6 kHz acquisition rate enables recording one velocity field every other crank angle at 2,000 RPM engine speed. Sample results such as individual and average flow fields and kinetic energy evolutions are presented.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 6, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off