Development and validation of a clinical prediction model for patient-reported pain and function after primary total knee replacement surgery

Development and validation of a clinical prediction model for patient-reported pain and function... To develop and validate a clinical prediction model of patient-reported pain and function after undergoing total knee replacement (TKR). We used data of 1,649 patients from the Knee Arthroplasty Trial who received primary TKR across 34 centres in the UK. The external validation included 595 patients from Southampton University Hospital, and Nuffield Orthopaedic Centre (Oxford). The outcome was the Oxford Knee Score (OKS) 12-month after TKR. Pre-operative predictors including patient characteristics and clinical factors were considered. Bootstrap backward linear regression analysis was used. Low pre-operative OKS, living in poor areas, high body mass index, and patient-reported anxiety or depression were associated with worse outcome. The clinical factors associated with worse outcome were worse pre-operative physical status, presence of other conditions affecting mobility and previous knee arthroscopy. Presence of fixed flexion deformity and an absent or damaged pre-operative anterior cruciate ligament (compared with intact) were associated with better outcome. Discrimination and calibration statistics were satisfactory. External validation predicted 21.1% of the variance of outcome. This is the first clinical prediction model for predicting self-reported pain and function 12 months after TKR to be externally validated. It will help to inform to patients regarding expectations of the outcome after knee replacement surgery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Development and validation of a clinical prediction model for patient-reported pain and function after primary total knee replacement surgery

Loading next page...
 
/lp/springer_journal/development-and-validation-of-a-clinical-prediction-model-for-patient-0ZZRZ5oI80
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-21714-1
Publisher site
See Article on Publisher Site

Abstract

To develop and validate a clinical prediction model of patient-reported pain and function after undergoing total knee replacement (TKR). We used data of 1,649 patients from the Knee Arthroplasty Trial who received primary TKR across 34 centres in the UK. The external validation included 595 patients from Southampton University Hospital, and Nuffield Orthopaedic Centre (Oxford). The outcome was the Oxford Knee Score (OKS) 12-month after TKR. Pre-operative predictors including patient characteristics and clinical factors were considered. Bootstrap backward linear regression analysis was used. Low pre-operative OKS, living in poor areas, high body mass index, and patient-reported anxiety or depression were associated with worse outcome. The clinical factors associated with worse outcome were worse pre-operative physical status, presence of other conditions affecting mobility and previous knee arthroscopy. Presence of fixed flexion deformity and an absent or damaged pre-operative anterior cruciate ligament (compared with intact) were associated with better outcome. Discrimination and calibration statistics were satisfactory. External validation predicted 21.1% of the variance of outcome. This is the first clinical prediction model for predicting self-reported pain and function 12 months after TKR to be externally validated. It will help to inform to patients regarding expectations of the outcome after knee replacement surgery.

Journal

Scientific ReportsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off