Developing a novel epileptic discharge localization algorithm for electroencephalogram infantile spasms during hypsarrhythmia

Developing a novel epileptic discharge localization algorithm for electroencephalogram infantile... Infantile spasms (ISS) is a devastating epileptic syndrome that affects children under the age of 1 year. The diagnosis of ISS is based on the semiology of the seizure and the electroencephalogram (EEG) background characterized by hypsarrhythmia (HYPS). However, even skilled electrophysiologists may interpret the EEG of children with ISS differently, and commercial software or existing epilepsy detection algorithms are not helpful. Since EEG is a key factor in the diagnosis of ISS, misinterpretation could result in serious consequences including inappropriate treatment. In this paper, we developed a novel algorithm to localize the relevant electrical abnormality known as epileptic discharges (or spikes) to provide a quantitative assessment of ISS in HYPS. The proposed algorithm extracts novel time–frequency features from the EEG signals and localizes the epileptic discharges associated with ISS in HYPS using a support vector machine classifier. We evaluated the proposed method on an EEG dataset with ISS subjects and obtained an average true positive and false negative of 98 and 7%, respectively, which was a significant improvement compared to the results obtained using the clinically available software. The proposed automated method provides a quantitative assessment of ISS in HYPS, which could significantly enhance our knowledge in therapy management of ISS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medical & Biological Engineering & Computing Springer Journals

Developing a novel epileptic discharge localization algorithm for electroencephalogram infantile spasms during hypsarrhythmia

Loading next page...
 
/lp/springer_journal/developing-a-novel-epileptic-discharge-localization-algorithm-for-cLbvY6MoZN
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by International Federation for Medical and Biological Engineering
Subject
Biomedicine; Human Physiology; Biomedical Engineering; Imaging / Radiology; Computer Applications
ISSN
0140-0118
eISSN
1741-0444
D.O.I.
10.1007/s11517-017-1616-z
Publisher site
See Article on Publisher Site

Abstract

Infantile spasms (ISS) is a devastating epileptic syndrome that affects children under the age of 1 year. The diagnosis of ISS is based on the semiology of the seizure and the electroencephalogram (EEG) background characterized by hypsarrhythmia (HYPS). However, even skilled electrophysiologists may interpret the EEG of children with ISS differently, and commercial software or existing epilepsy detection algorithms are not helpful. Since EEG is a key factor in the diagnosis of ISS, misinterpretation could result in serious consequences including inappropriate treatment. In this paper, we developed a novel algorithm to localize the relevant electrical abnormality known as epileptic discharges (or spikes) to provide a quantitative assessment of ISS in HYPS. The proposed algorithm extracts novel time–frequency features from the EEG signals and localizes the epileptic discharges associated with ISS in HYPS using a support vector machine classifier. We evaluated the proposed method on an EEG dataset with ISS subjects and obtained an average true positive and false negative of 98 and 7%, respectively, which was a significant improvement compared to the results obtained using the clinically available software. The proposed automated method provides a quantitative assessment of ISS in HYPS, which could significantly enhance our knowledge in therapy management of ISS.

Journal

Medical & Biological Engineering & ComputingSpringer Journals

Published: Feb 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off