Developing a Low-Velocity Collision Model Based on the Nasa Standard Breakup Model

Developing a Low-Velocity Collision Model Based on the Nasa Standard Breakup Model We have conducted a series of low-velocity impact experiments to understand the dispersion properties of fragments newly created by low-velocity impacts possible in space, especially in geostationary Earth orbit. The test results are utilized to establish a mathematical prediction model to be used in debris generation and propagation codes. Since the expected collision velocity between catalogued objects in geostationary Earth orbit shows a peak at a few hundreds meters per second, these impact experiments were conducted at a velocity range lower than 300 m/s. As a typical structure of satellites in geostationary Earth orbit, thin aluminum honeycomb sandwich panels with carbon fiber reinforced plastics face sheets were prepared, while the projectile was a stainless steel ball of 9 mm diameter. The data collected through these impact experiments have been re-analyzed based on the method used in the National Aeronautics and Space Administration (NASA) standard breakup model 1998 revision. The results indicate that the NASA standard breakup model derived from hypervelocity impacts could be applied to low-velocity collision possible in geostationary Earth orbit with some modifications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Space Debris Springer Journals

Developing a Low-Velocity Collision Model Based on the Nasa Standard Breakup Model

Loading next page...
 
/lp/springer_journal/developing-a-low-velocity-collision-model-based-on-the-nasa-standard-C2Iq1DzqbB
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Engineering; Automotive Engineering; Law of the Sea, Air and Outer Space; Astronomy, Observations and Techniques
ISSN
1388-3828
eISSN
1572-9664
D.O.I.
10.1023/B:SDEB.0000029903.61467.cd
Publisher site
See Article on Publisher Site

Abstract

We have conducted a series of low-velocity impact experiments to understand the dispersion properties of fragments newly created by low-velocity impacts possible in space, especially in geostationary Earth orbit. The test results are utilized to establish a mathematical prediction model to be used in debris generation and propagation codes. Since the expected collision velocity between catalogued objects in geostationary Earth orbit shows a peak at a few hundreds meters per second, these impact experiments were conducted at a velocity range lower than 300 m/s. As a typical structure of satellites in geostationary Earth orbit, thin aluminum honeycomb sandwich panels with carbon fiber reinforced plastics face sheets were prepared, while the projectile was a stainless steel ball of 9 mm diameter. The data collected through these impact experiments have been re-analyzed based on the method used in the National Aeronautics and Space Administration (NASA) standard breakup model 1998 revision. The results indicate that the NASA standard breakup model derived from hypervelocity impacts could be applied to low-velocity collision possible in geostationary Earth orbit with some modifications.

Journal

Space DebrisSpringer Journals

Published: Oct 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off