Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication

Deterministic remote preparation of an arbitrary qubit state using a partially entangled state... We propose a deterministic remote state preparation (RSP) scheme for preparing an arbitrary (including pure and mixed) qubit, where a partially entangled state and finite classical communication are used. To our knowledge, our scheme is the first RSP scheme that fits into this category. One other RSP scheme proposed by Berry shares close features, but can only be used to prepare an arbitrary pure qubit. Even so, our scheme saves classical communication by approximate 1 bit per prepared qubit under equal conditions. When using a maximally entangled state, the classical communication for our scheme is 2 bits, which agrees with Lo’s conjecture on the resource cost. Furthermore Alice can switch between our RSP scheme and a standard teleportation scheme without letting Bob know, which makes the quantum channel multipurpose. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication

Loading next page...
 
/lp/springer_journal/deterministic-remote-preparation-of-an-arbitrary-qubit-state-using-a-dYCAvc8kvB
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1423-8
Publisher site
See Article on Publisher Site

Abstract

We propose a deterministic remote state preparation (RSP) scheme for preparing an arbitrary (including pure and mixed) qubit, where a partially entangled state and finite classical communication are used. To our knowledge, our scheme is the first RSP scheme that fits into this category. One other RSP scheme proposed by Berry shares close features, but can only be used to prepare an arbitrary pure qubit. Even so, our scheme saves classical communication by approximate 1 bit per prepared qubit under equal conditions. When using a maximally entangled state, the classical communication for our scheme is 2 bits, which agrees with Lo’s conjecture on the resource cost. Furthermore Alice can switch between our RSP scheme and a standard teleportation scheme without letting Bob know, which makes the quantum channel multipurpose.

Journal

Quantum Information ProcessingSpringer Journals

Published: Aug 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off