Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states

Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states We present several schemes for joint remote preparation of arbitrary two- and three-qubit entangled states with complex coefficients via two and three GHZ states as the quantum channel, respectively. In these schemes, two senders (or N senders) share the original state which they wish to help the receiver to remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two senders (or N senders) collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubits, respectively, the receiver can reconstruct the original state by means of some appropriate unitary operations. The advantage of the present schemes is that the success probability in all the considered JRSP can reach 1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states

Loading next page...
 
/lp/springer_journal/deterministic-joint-remote-preparation-of-arbitrary-two-and-three-xZKfNpkuHT
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0441-4
Publisher site
See Article on Publisher Site

Abstract

We present several schemes for joint remote preparation of arbitrary two- and three-qubit entangled states with complex coefficients via two and three GHZ states as the quantum channel, respectively. In these schemes, two senders (or N senders) share the original state which they wish to help the receiver to remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two senders (or N senders) collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubits, respectively, the receiver can reconstruct the original state by means of some appropriate unitary operations. The advantage of the present schemes is that the success probability in all the considered JRSP can reach 1.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 11, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off