Determination of the latex particle size in emulsion polymerization of methyl methacrylate with low emulsifier concentrations

Determination of the latex particle size in emulsion polymerization of methyl methacrylate with... The mean size of the latex particles formed in emulsion polymerization of methyl methacrylate under definite conditions (water: monomer volume ratio 15: 1, 80°C, potassium persulfate concentration 0.07 wt %) decreases from 200 to 9–10 nm as the concentration of an ionic surfactant (anionic Disponil AES 60, SDS, cationic C19H42BrN) is increased from 0.0 to 1.0 wt %. The nonionic surfactants studied influence the size of the latex particles formed differently: with ALM-10, the particle size decreases from 200 to 150–190 nm, whereas with ALM-7 and ALM-2 it increases from 200 to 320 nm as the surfactant concentration is increased from 0.0 to 1.0 wt %. An increase in the concentration of F127 amphiphilic ternary block copolymer from 0.0 to 1.0 wt % leads to a monotonic decrease in the size of the poly(methyl methacrylate) latex particles formed from 200 to 53 nm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Determination of the latex particle size in emulsion polymerization of methyl methacrylate with low emulsifier concentrations

Loading next page...
 
/lp/springer_journal/determination-of-the-latex-particle-size-in-emulsion-polymerization-of-KLwlHnophe
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216070132
Publisher site
See Article on Publisher Site

Abstract

The mean size of the latex particles formed in emulsion polymerization of methyl methacrylate under definite conditions (water: monomer volume ratio 15: 1, 80°C, potassium persulfate concentration 0.07 wt %) decreases from 200 to 9–10 nm as the concentration of an ionic surfactant (anionic Disponil AES 60, SDS, cationic C19H42BrN) is increased from 0.0 to 1.0 wt %. The nonionic surfactants studied influence the size of the latex particles formed differently: with ALM-10, the particle size decreases from 200 to 150–190 nm, whereas with ALM-7 and ALM-2 it increases from 200 to 320 nm as the surfactant concentration is increased from 0.0 to 1.0 wt %. An increase in the concentration of F127 amphiphilic ternary block copolymer from 0.0 to 1.0 wt % leads to a monotonic decrease in the size of the poly(methyl methacrylate) latex particles formed from 200 to 53 nm.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Oct 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off