Determination of rough-surface skin friction coefficients from wake profile measurements

Determination of rough-surface skin friction coefficients from wake profile measurements A technique for determining the skin friction coefficients from wake profile measurements is described, and is applied to symmetric turbine airfoils with rough surfaces, which operate in a compressible, high-speed flow environment. The procedure involves the measurement of profiles of streamwise momentum in the wakes which form downstream of different airfoils with different levels of surface roughness. Different physical phenomena which affect such wake profiles are discussed and related to different effects, such as surface roughness, form drag, flow separation zones, and laminar-to-turbulent transition. With the same inlet experimental condition for each case, overall skin friction coefficients for the rough airfoils are determined. Resulting values increase considerably as the magnitude of equivalent sandgrain roughness size increases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Determination of rough-surface skin friction coefficients from wake profile measurements

Loading next page...
 
/lp/springer_journal/determination-of-rough-surface-skin-friction-coefficients-from-wake-50D0fLgLV7
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0712-z
Publisher site
See Article on Publisher Site

Abstract

A technique for determining the skin friction coefficients from wake profile measurements is described, and is applied to symmetric turbine airfoils with rough surfaces, which operate in a compressible, high-speed flow environment. The procedure involves the measurement of profiles of streamwise momentum in the wakes which form downstream of different airfoils with different levels of surface roughness. Different physical phenomena which affect such wake profiles are discussed and related to different effects, such as surface roughness, form drag, flow separation zones, and laminar-to-turbulent transition. With the same inlet experimental condition for each case, overall skin friction coefficients for the rough airfoils are determined. Resulting values increase considerably as the magnitude of equivalent sandgrain roughness size increases.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 21, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off