Determination of Pesticide Residues in Teas via QuEChERS Combined with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Tandem Mass Spectrometry

Determination of Pesticide Residues in Teas via QuEChERS Combined with Dispersive Liquid–Liquid... In this study, an effective gas chromatography–tandem mass spectrometry method was developed to determine 47 pesticide residues in tea. Sample preparation involved a quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure, wherein the sample is extracted by acetonitrile and cleaned up with multiwalled carbon nanotubes and primary secondary amine adsorbents; dispersive liquid–liquid microextraction (DLLME) was subsequently performed using carbon tetrachloride as extractive solvent and the extract obtained by QuEChERS as dispersive solvent. Factors influencing DLLME efficiency, including type and volume of extractive solvent, volume of dispersive solvent, and extraction time were evaluated. For validation purposes, recovery studies were performed using matrix blanks fortified with pesticides at three concentrations, namely, 10, 50, and 100 μg kg−1. Most of the analytes were recovered at an acceptable range of 70‒120% and RSDs ≤ 20% were acquired for green tea, oolong tea, black tea, and puer tea. Limits of quantification of pesticides obtained for these teas were sufficiently low, and most pesticides levels were lower than 10 μg kg−1, which satisfies the requirements for maximum residue levels (MRLs) as prescribed by the European Community. Twenty-four commercially available tea samples were analyzed using this optimized method. Results revealed that the contents of chlorpyrifos and alpha-HCH from different green tea samples exceed the MRLs, and chlorpyrifos, bifenthrin, lambda-cyhalothrin, and cypermethrin are among the most frequently detected pesticides in teas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chromatographia Springer Journals

Determination of Pesticide Residues in Teas via QuEChERS Combined with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Tandem Mass Spectrometry

Loading next page...
 
/lp/springer_journal/determination-of-pesticide-residues-in-teas-via-quechers-combined-with-wrh000E6vo
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Chromatography; Proteomics; Pharmacy; Laboratory Medicine; Analytical Chemistry
ISSN
0009-5893
eISSN
1612-1112
D.O.I.
10.1007/s10337-017-3362-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial