Determination of membrane permeability to water from osmotically induced light-scattering changes of membrane vesicles: Analysis of the method

Determination of membrane permeability to water from osmotically induced light-scattering changes... The kinetics of osmotically induced changes in vesicular volume and internal solute concentration were analyzed for membrane vesicles containing fixed quantity of impermeable osmoticum in the lumen. The kinetic curves of the concentration and volume changes were shown to be dissimilar. The average durations of these two processes may differ by several tens of percents, depending on the extent and polarity of the initially imposed osmotic gradient. For vesicles containing identical solutes in the internal and external solutions, the problem is analyzed of how the concentration and volume changes are manifested in changes of the effective scattering cross-section of the vesicle. The light scattering changes, directed oppositely to volume changes, were found to coincide roughly with the kinetics of volume changes. The analysis shows that calculations of water permeability coefficient should be based on average duration of volume changes rather than the duration of concentration changes. The replacement in calculations of the first parameter with the second one may result in overestimation of water permeability by a factor of 1.5. This might be relevant to the reported discrepancies in water permeability values determined by the osmotic and isotope methods. Although the allowance for 1.5-fold overestimation cannot fully account for the differences observed, it significantly lowers the discrepancy between these estimates in some cases. The opposite signs of light scattering and volume changes originate from the presence of two components in the optical path of the vesicle, i.e., the membrane and the lumenal solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Determination of membrane permeability to water from osmotically induced light-scattering changes of membrane vesicles: Analysis of the method

Loading next page...
 
/lp/springer_journal/determination-of-membrane-permeability-to-water-from-osmotically-1zC4eoMBSD
Publisher
Springer Journals
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708030205
Publisher site
See Article on Publisher Site

Abstract

The kinetics of osmotically induced changes in vesicular volume and internal solute concentration were analyzed for membrane vesicles containing fixed quantity of impermeable osmoticum in the lumen. The kinetic curves of the concentration and volume changes were shown to be dissimilar. The average durations of these two processes may differ by several tens of percents, depending on the extent and polarity of the initially imposed osmotic gradient. For vesicles containing identical solutes in the internal and external solutions, the problem is analyzed of how the concentration and volume changes are manifested in changes of the effective scattering cross-section of the vesicle. The light scattering changes, directed oppositely to volume changes, were found to coincide roughly with the kinetics of volume changes. The analysis shows that calculations of water permeability coefficient should be based on average duration of volume changes rather than the duration of concentration changes. The replacement in calculations of the first parameter with the second one may result in overestimation of water permeability by a factor of 1.5. This might be relevant to the reported discrepancies in water permeability values determined by the osmotic and isotope methods. Although the allowance for 1.5-fold overestimation cannot fully account for the differences observed, it significantly lowers the discrepancy between these estimates in some cases. The opposite signs of light scattering and volume changes originate from the presence of two components in the optical path of the vesicle, i.e., the membrane and the lumenal solution.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 15, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off