Determination of membrane permeability to water from osmotically induced light-scattering changes of membrane vesicles: Analysis of the method

Determination of membrane permeability to water from osmotically induced light-scattering changes... The kinetics of osmotically induced changes in vesicular volume and internal solute concentration were analyzed for membrane vesicles containing fixed quantity of impermeable osmoticum in the lumen. The kinetic curves of the concentration and volume changes were shown to be dissimilar. The average durations of these two processes may differ by several tens of percents, depending on the extent and polarity of the initially imposed osmotic gradient. For vesicles containing identical solutes in the internal and external solutions, the problem is analyzed of how the concentration and volume changes are manifested in changes of the effective scattering cross-section of the vesicle. The light scattering changes, directed oppositely to volume changes, were found to coincide roughly with the kinetics of volume changes. The analysis shows that calculations of water permeability coefficient should be based on average duration of volume changes rather than the duration of concentration changes. The replacement in calculations of the first parameter with the second one may result in overestimation of water permeability by a factor of 1.5. This might be relevant to the reported discrepancies in water permeability values determined by the osmotic and isotope methods. Although the allowance for 1.5-fold overestimation cannot fully account for the differences observed, it significantly lowers the discrepancy between these estimates in some cases. The opposite signs of light scattering and volume changes originate from the presence of two components in the optical path of the vesicle, i.e., the membrane and the lumenal solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Determination of membrane permeability to water from osmotically induced light-scattering changes of membrane vesicles: Analysis of the method

Loading next page...
 
/lp/springer_journal/determination-of-membrane-permeability-to-water-from-osmotically-1zC4eoMBSD
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708030205
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial