Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser-light scattering analysis

Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow... Aqueous nanocellulose dispersions were prepared from wood cellulose by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The obtained TEMPO-oxidized cellulose was converted into TEMPO-oxidized cellulose nanofibrils (TOCNs) of different lengths by controlling the nanofibrillation conditions in water or using dilute acid hydrolysis. The average lengths and length distributions of TOCNs have been measured from transmission electron microscopy (TEM) and atomic force microscopy (AFM) images. However, because the number of nanocelluloses observable in TEM and AFM images is limited, a more reliable method is needed to obtain the lengths/length distributions of TOCNs. In this study, the aqueous TOCN dispersions were subjected to a combination of field-flow fractionation (FFF) and multi-angle laser-light scattering (MALLS). The optimum FFF operation conditions for the acid-hydrolyzed TOCN were first established to obtain reasonable data. For TOCNs with average lengths > 400 nm, suitable separation could not be achieved using the FFF/MALLS system. In contrast, the TOCNs with average lengths of 170 and 270 nm were adequately separated according to their sizes by the FFF system. The TOCN length distribution patterns corresponded well to those obtained from TEM images. However, the amounts of TOCNs with lengths > 250 nm were underestimated compared with those determined from TEM images. For TOCNs with average lengths of 170 and 270 nm, the molar mass at each TOCN length was determined using the FFF/MALLS system combined with a refractive index detector, where a specific refractive index increment of 0.165 mL/g was used for TOCN. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellulose Springer Journals

Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser-light scattering analysis

Loading next page...
 
/lp/springer_journal/determination-of-length-distribution-of-tempo-oxidized-cellulose-AtATpkmsxH
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Chemistry; Bioorganic Chemistry; Physical Chemistry; Organic Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Sustainable Development
ISSN
0969-0239
eISSN
1572-882X
D.O.I.
10.1007/s10570-018-1675-9
Publisher site
See Article on Publisher Site

Abstract

Aqueous nanocellulose dispersions were prepared from wood cellulose by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The obtained TEMPO-oxidized cellulose was converted into TEMPO-oxidized cellulose nanofibrils (TOCNs) of different lengths by controlling the nanofibrillation conditions in water or using dilute acid hydrolysis. The average lengths and length distributions of TOCNs have been measured from transmission electron microscopy (TEM) and atomic force microscopy (AFM) images. However, because the number of nanocelluloses observable in TEM and AFM images is limited, a more reliable method is needed to obtain the lengths/length distributions of TOCNs. In this study, the aqueous TOCN dispersions were subjected to a combination of field-flow fractionation (FFF) and multi-angle laser-light scattering (MALLS). The optimum FFF operation conditions for the acid-hydrolyzed TOCN were first established to obtain reasonable data. For TOCNs with average lengths > 400 nm, suitable separation could not be achieved using the FFF/MALLS system. In contrast, the TOCNs with average lengths of 170 and 270 nm were adequately separated according to their sizes by the FFF system. The TOCN length distribution patterns corresponded well to those obtained from TEM images. However, the amounts of TOCNs with lengths > 250 nm were underestimated compared with those determined from TEM images. For TOCNs with average lengths of 170 and 270 nm, the molar mass at each TOCN length was determined using the FFF/MALLS system combined with a refractive index detector, where a specific refractive index increment of 0.165 mL/g was used for TOCN.

Journal

CelluloseSpringer Journals

Published: Jan 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial