Determination of complete nucleotide sequence of Hibiscus latent Singapore virus : Evidence for the presence of an internal poly(A) tract

Determination of complete nucleotide sequence of Hibiscus latent Singapore virus : Evidence for... We have sequenced the complete genome of a hibiscus-infecting tobamovirus, Hibiscus latent Singapore virus (HLSV). The experimental host range of HLSV is similar to that of another distinct species of hibiscus infecting tobamovirus, Hibiscus latent Fort Pierce virus (HLFPV). The genomic structure of HLSV is similar to other tobamoviruses in general. It consists of a 5′ untranslated region (UTR), followed by ORFs encoding for a 128 kDa protein and a 186 kDa readthrough protein, a 30 kDa movement protein (MP), 18 kDa coat protein (CP) and a 3′ UTR. The unique feature of HLSV is the presence of a poly(A) tract within its 3′ UTR. In our previous work, we have reported MP and CP sequences of HLSV and its phylogenetic analysis. Here we report the complete nucleotide sequence of HLSV, phylogenetic analysis of the nucleotide and amino acid sequences of 128/186 kDa ORFs and the presence of a uniquely located poly(A) tract within the 3′ UTR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Determination of complete nucleotide sequence of Hibiscus latent Singapore virus : Evidence for the presence of an internal poly(A) tract

Loading next page...
 
/lp/springer_journal/determination-of-complete-nucleotide-sequence-of-hibiscus-latent-2xh1y10GO9
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-004-0404-x
Publisher site
See Article on Publisher Site

Abstract

We have sequenced the complete genome of a hibiscus-infecting tobamovirus, Hibiscus latent Singapore virus (HLSV). The experimental host range of HLSV is similar to that of another distinct species of hibiscus infecting tobamovirus, Hibiscus latent Fort Pierce virus (HLFPV). The genomic structure of HLSV is similar to other tobamoviruses in general. It consists of a 5′ untranslated region (UTR), followed by ORFs encoding for a 128 kDa protein and a 186 kDa readthrough protein, a 30 kDa movement protein (MP), 18 kDa coat protein (CP) and a 3′ UTR. The unique feature of HLSV is the presence of a poly(A) tract within its 3′ UTR. In our previous work, we have reported MP and CP sequences of HLSV and its phylogenetic analysis. Here we report the complete nucleotide sequence of HLSV, phylogenetic analysis of the nucleotide and amino acid sequences of 128/186 kDa ORFs and the presence of a uniquely located poly(A) tract within the 3′ UTR.

Journal

Archives of VirologySpringer Journals

Published: Jan 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off