Determinants of House Prices: A Quantile Regression Approach

Determinants of House Prices: A Quantile Regression Approach OLS regression has typically been used in housing research to determine the relationship of a particular housing characteristic with selling price. Results differ across studies, not only in terms of size of OLS coefficients and statistical significance, but sometimes in direction of effect. This study suggests that some of the observed variation in the estimated prices of housing characteristics may reflect the fact that characteristics are not priced the same across a given distribution of house prices. To examine this issue, this study uses quantile regression, with and without accounting for spatial autocorrecation, to identify the coefficients of a large set of diverse variables across different quantiles. The results show that purchasers of higher-priced homes value certain housing characteristics such as square footage and the number of bathrooms differently from buyers of lower-priced homes. Other variables such as age are also shown to vary across the distribution of house prices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Determinants of House Prices: A Quantile Regression Approach

Loading next page...
 
/lp/springer_journal/determinants-of-house-prices-a-quantile-regression-approach-yKloSgCqbK
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-007-9053-7
Publisher site
See Article on Publisher Site

Abstract

OLS regression has typically been used in housing research to determine the relationship of a particular housing characteristic with selling price. Results differ across studies, not only in terms of size of OLS coefficients and statistical significance, but sometimes in direction of effect. This study suggests that some of the observed variation in the estimated prices of housing characteristics may reflect the fact that characteristics are not priced the same across a given distribution of house prices. To examine this issue, this study uses quantile regression, with and without accounting for spatial autocorrecation, to identify the coefficients of a large set of diverse variables across different quantiles. The results show that purchasers of higher-priced homes value certain housing characteristics such as square footage and the number of bathrooms differently from buyers of lower-priced homes. Other variables such as age are also shown to vary across the distribution of house prices.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Jul 18, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off