Detection of the photochemical intermediate processes in phycobiliproteins

Detection of the photochemical intermediate processes in phycobiliproteins The delayed luminescence was applied to detect the intermediate processes of the excitedstate decay in the selectively excited phycobiliproteins. Phosphorescence spectra of the five types of phycobiliproteins, R-PE, CPC, APC, R-PC, PEC were reported in this article. The five phycobiliproteins showed different phosphorescence yields, the sequence of which was the same as that of the singlet oxygen yields. Based on the observation, it can be concluded that each of the chromophores possesses a characteristic phosphorescence emission. The delayed luminescence spectra of APC at different aggregation states (trimer, monomer and denatured APC) are researched. The lower aggregation APC showed less phosphorescence because of relative loose structures and less interaction with the surrounding proteins, while the denatured APC showed delayed fluorescence instead of phosphorescence because of triplet-triplet annihilation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Detection of the photochemical intermediate processes in phycobiliproteins

Loading next page...
 
/lp/springer_journal/detection-of-the-photochemical-intermediate-processes-in-oiAx4IJh0X
Publisher
Springer Netherlands
Copyright
Copyright © 2000 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856700X00688
Publisher site
See Article on Publisher Site

Abstract

The delayed luminescence was applied to detect the intermediate processes of the excitedstate decay in the selectively excited phycobiliproteins. Phosphorescence spectra of the five types of phycobiliproteins, R-PE, CPC, APC, R-PC, PEC were reported in this article. The five phycobiliproteins showed different phosphorescence yields, the sequence of which was the same as that of the singlet oxygen yields. Based on the observation, it can be concluded that each of the chromophores possesses a characteristic phosphorescence emission. The delayed luminescence spectra of APC at different aggregation states (trimer, monomer and denatured APC) are researched. The lower aggregation APC showed less phosphorescence because of relative loose structures and less interaction with the surrounding proteins, while the denatured APC showed delayed fluorescence instead of phosphorescence because of triplet-triplet annihilation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 7, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off