Detection of replicating negative-sense RNAs in CaCo-2 cells infected with human astrovirus

Detection of replicating negative-sense RNAs in CaCo-2 cells infected with human astrovirus Human astrovirus (HAstV) is the second most important cause of viral diarrhea and acute gastroenteritis in infants under five. However, determination of the infectivity of clinical isolates is difficult, and the replication cycle of HAstV is not yet fully understood. In this study, it was attempted to detect negative-sense (−)RNAs generated during the replication of RNA viruses. We used clinical isolates of HAstV to infect CaCo-2 cells. Reverse transcription using only a sense primer followed by PCR using both sense and antisense primers showed that (−)RNAs were first detected in CaCo-2 cells between 9 and 12 h postinfection (p.i.). However, these (−)RNAs were not detected when cells were treated with the protein synthesis inhibitor cycloheximide during HAstV infection. Next, RT with only an antisense primer followed by PCR was performed to detect (+)RNA of HAstVs after production of (−)RNAs during replication. RT-PCR results using the antisense primer revealed that the amount of (+)RNA began to increase starting 9 h p.i., indicating an accumulation of the newly synthesized (+)RNA genome. Cycloheximide was observed to abrogate the increase of newly made (+)RNA during HAstV infection. In conclusion, the use of sense or antisense primers during the RT reaction together with cycloheximide enabled us to quantitatively detect (−)RNAs, and this proved to be an useful tool in understanding the replication cycle of HAstV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Detection of replicating negative-sense RNAs in CaCo-2 cells infected with human astrovirus

Loading next page...
 
/lp/springer_journal/detection-of-replicating-negative-sense-rnas-in-caco-2-cells-infected-hPd3FuD9mo
Publisher
Springer Vienna
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0718-9
Publisher site
See Article on Publisher Site

Abstract

Human astrovirus (HAstV) is the second most important cause of viral diarrhea and acute gastroenteritis in infants under five. However, determination of the infectivity of clinical isolates is difficult, and the replication cycle of HAstV is not yet fully understood. In this study, it was attempted to detect negative-sense (−)RNAs generated during the replication of RNA viruses. We used clinical isolates of HAstV to infect CaCo-2 cells. Reverse transcription using only a sense primer followed by PCR using both sense and antisense primers showed that (−)RNAs were first detected in CaCo-2 cells between 9 and 12 h postinfection (p.i.). However, these (−)RNAs were not detected when cells were treated with the protein synthesis inhibitor cycloheximide during HAstV infection. Next, RT with only an antisense primer followed by PCR was performed to detect (+)RNA of HAstVs after production of (−)RNAs during replication. RT-PCR results using the antisense primer revealed that the amount of (+)RNA began to increase starting 9 h p.i., indicating an accumulation of the newly synthesized (+)RNA genome. Cycloheximide was observed to abrogate the increase of newly made (+)RNA during HAstV infection. In conclusion, the use of sense or antisense primers during the RT reaction together with cycloheximide enabled us to quantitatively detect (−)RNAs, and this proved to be an useful tool in understanding the replication cycle of HAstV.

Journal

Archives of VirologySpringer Journals

Published: Sep 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off