Detection of bacterial wilt infection caused by Ralstonia solanacearum in potato (Solanum tuberosum L.) through multifractal analysis applied to remotely sensed data

Detection of bacterial wilt infection caused by Ralstonia solanacearum in potato (Solanum... Potato bacterial wilt, caused by the bacterium Ralstonia solanacearum race 3 biovar 2 (R3bv2), affects potato production in several regions in the world. The disease becomes visually detectable when extensive damage to the crop has already occurred. Two greenhouse experiments were conducted to test the capability of a remote sensing diagnostic method supported by multispectral and multifractal analyses of the light reflectance signal, to detect physiological and morphological changes in plants caused by the infection. The analysis was carried out using the Wavelet Transform Modulus Maxima (WTMM) combined with the Multifractal (MF) analysis to assess the variability of high-resolution temporal and spatial signals and the conservative properties of the processes across temporal and spatial scales. The multispectral signal, enhanced by multifractal analysis, detected both symptomatic and latently infected plants, matching the results of ELISA laboratory assessment in 100 and 82%, respectively. Although the multispectral method provided no earlier detection than the visual assessment on symptomatic plants, the former was able to detect asymptomatic latent infection, showing a great potential as a monitoring tool for the control of bacterial wilt in potato crops. Applied to precision agriculture, this capability of the remote sensing diagnostic methodology would provide a more efficient control of the disease through an early and full spatial assessment of the health status of the crop and the prevention of spreading the disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Detection of bacterial wilt infection caused by Ralstonia solanacearum in potato (Solanum tuberosum L.) through multifractal analysis applied to remotely sensed data

Loading next page...
 
/lp/springer_journal/detection-of-bacterial-wilt-infection-caused-by-ralstonia-solanacearum-dWyopb5deL
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-011-9242-5
Publisher site
See Article on Publisher Site

Abstract

Potato bacterial wilt, caused by the bacterium Ralstonia solanacearum race 3 biovar 2 (R3bv2), affects potato production in several regions in the world. The disease becomes visually detectable when extensive damage to the crop has already occurred. Two greenhouse experiments were conducted to test the capability of a remote sensing diagnostic method supported by multispectral and multifractal analyses of the light reflectance signal, to detect physiological and morphological changes in plants caused by the infection. The analysis was carried out using the Wavelet Transform Modulus Maxima (WTMM) combined with the Multifractal (MF) analysis to assess the variability of high-resolution temporal and spatial signals and the conservative properties of the processes across temporal and spatial scales. The multispectral signal, enhanced by multifractal analysis, detected both symptomatic and latently infected plants, matching the results of ELISA laboratory assessment in 100 and 82%, respectively. Although the multispectral method provided no earlier detection than the visual assessment on symptomatic plants, the former was able to detect asymptomatic latent infection, showing a great potential as a monitoring tool for the control of bacterial wilt in potato crops. Applied to precision agriculture, this capability of the remote sensing diagnostic methodology would provide a more efficient control of the disease through an early and full spatial assessment of the health status of the crop and the prevention of spreading the disease.

Journal

Precision AgricultureSpringer Journals

Published: Aug 19, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off