Detecting anomalous access patterns in relational databases

Detecting anomalous access patterns in relational databases A considerable effort has been recently devoted to the development of Database Management Systems (DBMS) which guarantee high assurance and security. An important component of any strong security solution is represented by Intrusion Detection (ID) techniques, able to detect anomalous behavior of applications and users. To date, however, there have been few ID mechanisms proposed which are specifically tailored to function within the DBMS. In this paper, we propose such a mechanism. Our approach is based on mining SQL queries stored in database audit log files. The result of the mining process is used to form profiles that can model normal database access behavior and identify intruders. We consider two different scenarios while addressing the problem. In the first case, we assume that the database has a Role Based Access Control (RBAC) model in place. Under a RBAC system permissions are associated with roles, grouping several users, rather than with single users. Our ID system is able to determine role intruders, that is, individuals while holding a specific role, behave differently than expected. An important advantage of providing an ID technique specifically tailored to RBAC databases is that it can help in protecting against insider threats. Furthermore, the existence of roles makes our approach usable even for databases with large user population. In the second scenario, we assume that there are no roles associated with users of the database. In this case, we look directly at the behavior of the users. We employ clustering algorithms to form concise profiles representing normal user behavior. For detection, we either use these clustered profiles as the roles or employ outlier detection techniques to identify behavior that deviates from the profiles. Our preliminary experimental evaluation on both real and synthetic database traces shows that our methods work well in practical situations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Detecting anomalous access patterns in relational databases

Loading next page...
 
/lp/springer_journal/detecting-anomalous-access-patterns-in-relational-databases-jwQ4XRpBf7
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0051-4
Publisher site
See Article on Publisher Site

Abstract

A considerable effort has been recently devoted to the development of Database Management Systems (DBMS) which guarantee high assurance and security. An important component of any strong security solution is represented by Intrusion Detection (ID) techniques, able to detect anomalous behavior of applications and users. To date, however, there have been few ID mechanisms proposed which are specifically tailored to function within the DBMS. In this paper, we propose such a mechanism. Our approach is based on mining SQL queries stored in database audit log files. The result of the mining process is used to form profiles that can model normal database access behavior and identify intruders. We consider two different scenarios while addressing the problem. In the first case, we assume that the database has a Role Based Access Control (RBAC) model in place. Under a RBAC system permissions are associated with roles, grouping several users, rather than with single users. Our ID system is able to determine role intruders, that is, individuals while holding a specific role, behave differently than expected. An important advantage of providing an ID technique specifically tailored to RBAC databases is that it can help in protecting against insider threats. Furthermore, the existence of roles makes our approach usable even for databases with large user population. In the second scenario, we assume that there are no roles associated with users of the database. In this case, we look directly at the behavior of the users. We employ clustering algorithms to form concise profiles representing normal user behavior. For detection, we either use these clustered profiles as the roles or employ outlier detection techniques to identify behavior that deviates from the profiles. Our preliminary experimental evaluation on both real and synthetic database traces shows that our methods work well in practical situations.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off