Detailed measurements of equivalence ratio modulations in premixed flames using laser Rayleigh scattering and absorption spectroscopy

Detailed measurements of equivalence ratio modulations in premixed flames using laser Rayleigh... Equivalence ratio non-uniformities may give rise to some of the instabilities observed in modern lean premixed combustion systems. The present work intends to investigate the influence of equivalence ratio perturbations on the dynamics of premixed flames. A burner equipped with a secondary injection system is used to generate equivalence ratio perturbations which are convected by the flow and impinge on a conical flame. Two laser-diagnostics, based on Rayleigh scattering and hydrocarbon infrared absorption, respectively, are employed to give insight into the spatial and temporal evolution of the mixture composition field. Rayleigh scattering images also reveal the flame front dynamics providing an indication on the response of a weakly turbulent flame subject to mixture composition inhomogeneities. Laser light absorption provides a time resolved signal which is used to estimate the equivalence ratio perturbation level. A theoretical model based on the G-equation is used to interpret the experimental data and compare the relative effects of velocity and equivalence ratio perturbations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Detailed measurements of equivalence ratio modulations in premixed flames using laser Rayleigh scattering and absorption spectroscopy

Loading next page...
 
/lp/springer_journal/detailed-measurements-of-equivalence-ratio-modulations-in-premixed-Atw6sSOH20
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0972-3
Publisher site
See Article on Publisher Site

Abstract

Equivalence ratio non-uniformities may give rise to some of the instabilities observed in modern lean premixed combustion systems. The present work intends to investigate the influence of equivalence ratio perturbations on the dynamics of premixed flames. A burner equipped with a secondary injection system is used to generate equivalence ratio perturbations which are convected by the flow and impinge on a conical flame. Two laser-diagnostics, based on Rayleigh scattering and hydrocarbon infrared absorption, respectively, are employed to give insight into the spatial and temporal evolution of the mixture composition field. Rayleigh scattering images also reveal the flame front dynamics providing an indication on the response of a weakly turbulent flame subject to mixture composition inhomogeneities. Laser light absorption provides a time resolved signal which is used to estimate the equivalence ratio perturbation level. A theoretical model based on the G-equation is used to interpret the experimental data and compare the relative effects of velocity and equivalence ratio perturbations.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 15, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off