Detailed Investigation of Core–Shell Precipitates in a Cu-Containing High Entropy Alloy

Detailed Investigation of Core–Shell Precipitates in a Cu-Containing High Entropy Alloy Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core–shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core–shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy–energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core–shell structure indicates that the Cu-rich core exhibits a bcc crystal structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JOM Springer Journals

Detailed Investigation of Core–Shell Precipitates in a Cu-Containing High Entropy Alloy

Loading next page...
 
/lp/springer_journal/detailed-investigation-of-core-shell-precipitates-in-a-cu-containing-pGTrpuRQ75
Publisher
Springer US
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Engineering; Engineering, general; Chemistry/Food Science, general; Physics, general; Environment, general; Earth Sciences, general
ISSN
1047-4838
eISSN
1543-1851
D.O.I.
10.1007/s11837-018-2935-8
Publisher site
See Article on Publisher Site

Abstract

Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core–shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core–shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy–energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core–shell structure indicates that the Cu-rich core exhibits a bcc crystal structure.

Journal

JOMSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off