Destruction of 2,4 Dichlorophenol in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

Destruction of 2,4 Dichlorophenol in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen The processes of degradation of 2,4-dichlorophenol (2,4-DCP) under the action of atmospheric pressure of dielectric barrier discharge (DBD) in oxygen were studied. It was shown that the degradation of 2,4-DCP proceeds efficiently. Degree of decomposition reaches 90%. The degradation kinetics of 2,4-DCP obeys the formal first-order kinetic law on concentration of 2,4-DCP. The effective rate constants depend weakly on the experimental conditions and are equal to ~0.2 s−1. Based on experimental data, the energy efficiency of decomposition of 2,4-DCP was determined. Depending on the conditions, the energy efficiency was in the range of (8–90) × 10−3 molecules per 100 eV. The composition of the products was studied by gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection-fourier transform infrared (ATR-FTIR) spectroscopy, electron spin resonance (ESR) spectroscopy and UV/Visible spectroscopy. It was shown that about ~20% of 2,4-DCP is converted to CO2, while the other part forms an organic film on the reactor wall. The substance formed is close to the carboxylic acids in chemical composition and exhibits electrical conductivity and paramagnetic properties. Almost all of the chlorine contained in the 2,4-DCP is released into the gas phase. The active species of the afterglow react with liquid hexane, forming the products of its oxidation. Some assumptions regarding the pathway of the process are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plasma Chemistry and Plasma Processing Springer Journals

Destruction of 2,4 Dichlorophenol in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

Loading next page...
 
/lp/springer_journal/destruction-of-2-4-dichlorophenol-in-an-atmospheric-pressure-HlDvIQT2Z0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Chemistry; Inorganic Chemistry; Classical Mechanics; Characterization and Evaluation of Materials; Mechanical Engineering
ISSN
0272-4324
eISSN
1572-8986
D.O.I.
10.1007/s11090-017-9828-4
Publisher site
See Article on Publisher Site

Abstract

The processes of degradation of 2,4-dichlorophenol (2,4-DCP) under the action of atmospheric pressure of dielectric barrier discharge (DBD) in oxygen were studied. It was shown that the degradation of 2,4-DCP proceeds efficiently. Degree of decomposition reaches 90%. The degradation kinetics of 2,4-DCP obeys the formal first-order kinetic law on concentration of 2,4-DCP. The effective rate constants depend weakly on the experimental conditions and are equal to ~0.2 s−1. Based on experimental data, the energy efficiency of decomposition of 2,4-DCP was determined. Depending on the conditions, the energy efficiency was in the range of (8–90) × 10−3 molecules per 100 eV. The composition of the products was studied by gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection-fourier transform infrared (ATR-FTIR) spectroscopy, electron spin resonance (ESR) spectroscopy and UV/Visible spectroscopy. It was shown that about ~20% of 2,4-DCP is converted to CO2, while the other part forms an organic film on the reactor wall. The substance formed is close to the carboxylic acids in chemical composition and exhibits electrical conductivity and paramagnetic properties. Almost all of the chlorine contained in the 2,4-DCP is released into the gas phase. The active species of the afterglow react with liquid hexane, forming the products of its oxidation. Some assumptions regarding the pathway of the process are discussed.

Journal

Plasma Chemistry and Plasma ProcessingSpringer Journals

Published: Jun 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off