Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials

Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials This paper examines the desorption of hydrogels synthesized with varied chemical compositions in cementitious materials. The absorption, chemical structure and mechanical response of hydrogels swollen in a cement mixture were studied. The effect of the capillary forces on the desorption of hydrogels was investigated in relation to the chemical composition of the hydrogels. In the second set of experiments, the behavior of the hydrogels in a hydrating cement paste was monitored by tracking the size and morphology evolution of hydrogels interacting with the cement paste matrix. It was shown that the changes on the surface characteristics of hydrogels as a result of interactions with the pore solution and cement particles can affect the desorption rate of hydrogels in contact with porous cementitious materials. Scanning electron microscopic examination demonstrated two different desorption modes with distinct morphologies of hydrogels depending on the chemical composition of hydrogels. The effect of the interfacial bonding between the hydrogels and the cementitious matrix and its relation to the desorption is illustrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials

Loading next page...
 
/lp/springer_journal/desorption-of-superabsorbent-hydrogels-with-varied-chemical-BDNZZxaFj4
Publisher
Springer Journals
Copyright
Copyright © 2017 by RILEM
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
D.O.I.
10.1617/s11527-017-1128-1
Publisher site
See Article on Publisher Site

Abstract

This paper examines the desorption of hydrogels synthesized with varied chemical compositions in cementitious materials. The absorption, chemical structure and mechanical response of hydrogels swollen in a cement mixture were studied. The effect of the capillary forces on the desorption of hydrogels was investigated in relation to the chemical composition of the hydrogels. In the second set of experiments, the behavior of the hydrogels in a hydrating cement paste was monitored by tracking the size and morphology evolution of hydrogels interacting with the cement paste matrix. It was shown that the changes on the surface characteristics of hydrogels as a result of interactions with the pore solution and cement particles can affect the desorption rate of hydrogels in contact with porous cementitious materials. Scanning electron microscopic examination demonstrated two different desorption modes with distinct morphologies of hydrogels depending on the chemical composition of hydrogels. The effect of the interfacial bonding between the hydrogels and the cementitious matrix and its relation to the desorption is illustrated.

Journal

Materials and StructuresSpringer Journals

Published: Jan 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off