Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Designing a low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile copolymers for high performance composite laminates

Designing a low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile copolymers... A low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile (SH/BZ-CN) copolymer system with well processability is designed and applied in high performance glass fiber (GF) composite laminates. Differential scanning calorimetry (DSC) results showed that plenty of phenolic hydroxyl groups on SH could catalyze the oxazine ring-opening and triazine/phthalonitrile ring-forming reaction of BZ-CN. The ring-opening peak and ring-forming peak of SH/BZ-CN systems are reduced by 47.1 °C and 17.0 °C than those of BZ-CN, respectively. The processability of SH/BZ-CN copolymers were improved and could be controlled by tuning SH content, processing temperature and time. These parameters provided ground for preparing SH/BZ-CN/GF composite laminates under a relatively mild condition. All SH/BZ-CN/GF composite laminates exhibit excellent flexural strength more than 500 MPa and flexural modulus over 22.0 Gpa. SH/BZ-CN/GF composites showed immiscible structures and double Tgs, and they could stand high temperature up to 350 °C. Low temperature curing, short processing time and low processing pressure are beneficial to large-scale manufacturing and application of SH/BZ-CN/GF composites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymer Research Springer Journals

Designing a low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile copolymers for high performance composite laminates

Loading next page...
1
 
/lp/springer_journal/designing-a-low-temperature-curable-phenolic-benzoxazine-NO28rQMbxr

References (38)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Chemistry; Polymer Sciences; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials
ISSN
1022-9760
eISSN
1572-8935
DOI
10.1007/s10965-017-1360-y
Publisher site
See Article on Publisher Site

Abstract

A low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile (SH/BZ-CN) copolymer system with well processability is designed and applied in high performance glass fiber (GF) composite laminates. Differential scanning calorimetry (DSC) results showed that plenty of phenolic hydroxyl groups on SH could catalyze the oxazine ring-opening and triazine/phthalonitrile ring-forming reaction of BZ-CN. The ring-opening peak and ring-forming peak of SH/BZ-CN systems are reduced by 47.1 °C and 17.0 °C than those of BZ-CN, respectively. The processability of SH/BZ-CN copolymers were improved and could be controlled by tuning SH content, processing temperature and time. These parameters provided ground for preparing SH/BZ-CN/GF composite laminates under a relatively mild condition. All SH/BZ-CN/GF composite laminates exhibit excellent flexural strength more than 500 MPa and flexural modulus over 22.0 Gpa. SH/BZ-CN/GF composites showed immiscible structures and double Tgs, and they could stand high temperature up to 350 °C. Low temperature curing, short processing time and low processing pressure are beneficial to large-scale manufacturing and application of SH/BZ-CN/GF composites.

Journal

Journal of Polymer ResearchSpringer Journals

Published: Oct 26, 2017

There are no references for this article.