Designing a green optical network unit using ARMA-based traffic prediction for quality of service-aware traffic

Designing a green optical network unit using ARMA-based traffic prediction for quality of... The optical access networks (OANs) provide an attractive solution to the bandwidth bottleneck problem of the last mile. However, it has been proved (Baliga et al. in J Lightwave Technol 27(13):2391–2403, 2009; Baliga et al. in IEEE Commun Mag 49(6):70–77, 2011) that the OAN consumes a significant ratio of the total energy consumed in an optical networking scenario. This has provided incentive for inspection of energy-efficient schemes for OANs. It has been demonstrated in the literature that energy consumption figures of an OAN can be improved by either designing efficient hardware or employing better media access control (MAC) protocols. In this paper, we design a MAC protocol for OANs to ensure energy-efficiency in the presence of quality of service (QoS)-aware traffic. The proposed scheme incorporates traffic prediction-based selection of different sleep (energy-efficient) modes of operation, of the optical network units—ONUs (OAN end units). It also implements switching between different sleep modes to maintain high QoS with significant energy-efficiency figures. The discussed scheme requires processing at the ONU only and can work independent of the entire OAN (ONU assisted). Thus, our proposal is an attractive solution for the already deployed networks or even in green field deployment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Designing a green optical network unit using ARMA-based traffic prediction for quality of service-aware traffic

Loading next page...
 
/lp/springer_journal/designing-a-green-optical-network-unit-using-arma-based-traffic-skfy7hDvvh
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0671-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial