Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation

Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and... The metal ion-implantation of titanium oxide with various transition metal ions was carried out by applying by high voltage acceleration. The subsequent calcination of the implanted TiO2 in oxygen at around 723 K resulted in a large shift in the absorption spectra of the TiO2 toward visible light regions, its extent being dependent on the amount and the kind of metal ions implanted. Such metal ion-implanted titanium oxide catalysts were active in carrying out various photocatalytic reactions such as the decomposition of NO into N2, O2 and N2O at 275 K under irradiation with visible light longer than 450 nm. The application of this advanced, high energy metal ion-implantation method enables the novel design of titanium oxide photocatalysts which can absorb and initiate vital reactions under visible light and will contribute to the development of catalytic systems utilizing solar energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation

Loading next page...
 
/lp/springer_journal/design-of-unique-titanium-oxide-photocatalysts-by-an-advanced-metal-h19raR02Or
Publisher
Springer Netherlands
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00735
Publisher site
See Article on Publisher Site

Abstract

The metal ion-implantation of titanium oxide with various transition metal ions was carried out by applying by high voltage acceleration. The subsequent calcination of the implanted TiO2 in oxygen at around 723 K resulted in a large shift in the absorption spectra of the TiO2 toward visible light regions, its extent being dependent on the amount and the kind of metal ions implanted. Such metal ion-implanted titanium oxide catalysts were active in carrying out various photocatalytic reactions such as the decomposition of NO into N2, O2 and N2O at 275 K under irradiation with visible light longer than 450 nm. The application of this advanced, high energy metal ion-implantation method enables the novel design of titanium oxide photocatalysts which can absorb and initiate vital reactions under visible light and will contribute to the development of catalytic systems utilizing solar energy.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off