Design of Translucent Optical Networks: Partitioning and Restoration

Design of Translucent Optical Networks: Partitioning and Restoration We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We develop an integer linear programming (ILP) formulation for partitioning an optical network topology into subnetworks, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations, and it is two-connected. A greedy heuristic partitioning algorithm is proposed for planar network topologies. We use section restoration for translucent networks where failed connections are rerouted within the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that fiber costs with section restoration are close to those with path restoration for mesh topologies used in this study. It is also shown that the number of transponders with the translucent network architecture is substantially reduced compared to opaque networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Design of Translucent Optical Networks: Partitioning and Restoration

Loading next page...
 
/lp/springer_journal/design-of-translucent-optical-networks-partitioning-and-restoration-h5MTjOnUwX
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/B:PNET.0000033979.26662.f4
Publisher site
See Article on Publisher Site

Abstract

We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We develop an integer linear programming (ILP) formulation for partitioning an optical network topology into subnetworks, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations, and it is two-connected. A greedy heuristic partitioning algorithm is proposed for planar network topologies. We use section restoration for translucent networks where failed connections are rerouted within the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that fiber costs with section restoration are close to those with path restoration for mesh topologies used in this study. It is also shown that the number of transponders with the translucent network architecture is substantially reduced compared to opaque networks.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 20, 2004

References

  • Wavelength conversion in WDM networking
    Ramamurthy, B.; Mukherjee, B.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off