Design of spiking neural networks for blood pressure prediction during general anesthesia: considerations for optimizing results

Design of spiking neural networks for blood pressure prediction during general anesthesia:... The ability to predict blood pressure changes during general anesthesia would assist anesthetists minimize the risk of complications due to hypotensive events. However, such prediction is not trivial. Evolving spiking neural networks are a relatively new computational method that may have application to this problem. NeuCubeST consists of a 3-dimensional network of locally connected neurons called a Spiking Neural Network reservoir (SNNr) and can be used to classify time series data for prediction. There are a number of design considerations when using NeuCubeST as a classifier of time-series data: what pre-processing of the raw data is required (pre-processing), how to convert the time-series data into a spike train (input-encoding), which neurons the data are connected to (input-mapping), and how many nearest neighbours to use in classification (classification). However, it is still unclear how sensitive NeuCubeST-based systems are to perturbations of any of the above. In this paper we evaluate the contribution of these design factors to blood pressure prediction using NeuCubeST. 6000 possible combinations of those NeuCubeST options were tested for each of 100 patients and for each a Signal to Noise Ratio was obtained. All four investigated design factors showed significant contribution to SNR. Intra-operative MAP prediction using NeuCubeST can be effective but performance is sensitive to the design choices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolving Systems Springer Journals

Design of spiking neural networks for blood pressure prediction during general anesthesia: considerations for optimizing results

Loading next page...
 
/lp/springer_journal/design-of-spiking-neural-networks-for-blood-pressure-prediction-during-P7F06SKMZQ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Complexity; Artificial Intelligence (incl. Robotics); Complex Systems
ISSN
1868-6478
eISSN
1868-6486
D.O.I.
10.1007/s12530-017-9176-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial