Design of Model Apple Cells Suspensions: Rheological Properties and Impact of the Continuous Phase

Design of Model Apple Cells Suspensions: Rheological Properties and Impact of the Continuous Phase The objective of this work is twofold: to develop a relevant model system to study plant cells suspensions’ rheology and to evaluate the impact of the continuous phase composition and viscosity on the rheological behaviour of apple cells suspensions. Model suspensions of individual or clustered apple cells were developed. Rheological behaviours of both type of suspensions were observed separately, suspending from 0.145 g/100mL to 3.48 g/100mL of particles in five model media and in the original apple serum. Our results show that model suspensions successfully reproduce the rheological behaviour of apple purees, following three concentration domains. In particular, cell clusters greatly reproduce the behaviour of bimodal apple purees, suggesting that clusters dominate the rheological behaviour of the whole puree. One of our main result is that continuous phase does not affect elastic properties of suspensions in the concentrated domain since they are essentially governed by particle interactions: G’ values are similar whatever the continuous phase. If the continuous phase has the main impact on diluted suspensions’ viscosity, its effect becomes smaller as particle concentration increases. A lubricating effect was observed in the concentrated domain for continuous phases containing polymers. Presence of polymers may help in structuring the network in the intermediate domain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Biophysics Springer Journals

Design of Model Apple Cells Suspensions: Rheological Properties and Impact of the Continuous Phase

Loading next page...
 
/lp/springer_journal/design-of-model-apple-cells-suspensions-rheological-properties-and-pJBCpj35J2
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Chemistry; Food Science; Biological and Medical Physics, Biophysics; Analytical Chemistry
ISSN
1557-1858
eISSN
1557-1866
D.O.I.
10.1007/s11483-017-9494-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial