Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport

Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number (Fr) parameters includes the volumetric sediment concentration (C V ), ratio of median particle diameter to hydraulic radius (d/R), ratio of median particle diameter to pipe diameter (d/D) and overall friction factor of sediment (λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy (R 2 = 0.965) than the ANFIS model and regression-based equations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Water Science Springer Journals

Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport

Loading next page...
 
/lp/springer_journal/design-of-a-fuzzy-differential-evolution-algorithm-to-predict-non-FoACnzoPS7
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Earth Sciences; Hydrogeology; Water Industry/Water Technologies; Industrial and Production Engineering; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Nanotechnology; Private International Law, International & Foreign Law, Comparative Law
ISSN
2190-5487
eISSN
2190-5495
D.O.I.
10.1007/s13201-017-0562-0
Publisher site
See Article on Publisher Site

Abstract

Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number (Fr) parameters includes the volumetric sediment concentration (C V ), ratio of median particle diameter to hydraulic radius (d/R), ratio of median particle diameter to pipe diameter (d/D) and overall friction factor of sediment (λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy (R 2 = 0.965) than the ANFIS model and regression-based equations.

Journal

Applied Water ScienceSpringer Journals

Published: Apr 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off