Design of (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives as D-π-A dye sensitizers in molecular photovoltaics: a density functional theory approach

Design of... The use of computational methods such as density functional theory (DFT) in material design has attracted considerable attention aimed at achieving efficient dye-sensitized solar cells (DSSCs). A series of novel (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives were simulated using DFT and time-dependent DFT for calculations of molecular properties, electronic properties, optical properties, population analysis, global reactivity indices and light harvesting efficiency (LHE). The results showed that incorporation of an F/CH3 substituent on the acceptor unit increased/decreased the charge density on the acceptor unit, thereby increasing/lowering its tendency to accept electrons from the donor unit through a π-conjugated linker due to the electron-withdrawing/electron-donating effect of F/CH3; this ultimately increased/decreased the highest occupied molecular orbital and lowest occupied molecular orbital (HOMO–LUMO) energy band gap (Eg). The para-amino substituents on the donor unit drastically increased the natural bond orbital (NBO) charges of both the donor and acceptor units of the dyes, i.e. para-CH3 < para-NH2 < para-N(CH3)2; this agreed well with the ordering of the band gap. Generally, dyes with para-N(CH3)2 on the donor subunit have longer light absorption wavelengths, a low Eg and a high LHE, which could lead to enhancement of the photocurrent and charge transfer in DSSCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Design of (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives as D-π-A dye sensitizers in molecular photovoltaics: a density functional theory approach

Loading next page...
 
/lp/springer_journal/design-of-2z-2-cyano-2-2-e-2-5-e-2-4-dimethylaminophenyl-vinyl-2-IIK54Mafzh
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2303-z
Publisher site
See Article on Publisher Site

Abstract

The use of computational methods such as density functional theory (DFT) in material design has attracted considerable attention aimed at achieving efficient dye-sensitized solar cells (DSSCs). A series of novel (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives were simulated using DFT and time-dependent DFT for calculations of molecular properties, electronic properties, optical properties, population analysis, global reactivity indices and light harvesting efficiency (LHE). The results showed that incorporation of an F/CH3 substituent on the acceptor unit increased/decreased the charge density on the acceptor unit, thereby increasing/lowering its tendency to accept electrons from the donor unit through a π-conjugated linker due to the electron-withdrawing/electron-donating effect of F/CH3; this ultimately increased/decreased the highest occupied molecular orbital and lowest occupied molecular orbital (HOMO–LUMO) energy band gap (Eg). The para-amino substituents on the donor unit drastically increased the natural bond orbital (NBO) charges of both the donor and acceptor units of the dyes, i.e. para-CH3 < para-NH2 < para-N(CH3)2; this agreed well with the ordering of the band gap. Generally, dyes with para-N(CH3)2 on the donor subunit have longer light absorption wavelengths, a low Eg and a high LHE, which could lead to enhancement of the photocurrent and charge transfer in DSSCs.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 19, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off