Design methodology for variable shell mould thickness and thermal conductivity additively manufactured

Design methodology for variable shell mould thickness and thermal conductivity additively... Additive manufacturing (AM) is said to be the fourth industrial revolution disrupting the manufacturing industry. A focus on the foundry industry’s need, more specifically the sand casting process, is done. The usage of additive manufacturing in this field necessitates a different mould design approach. Indeed, it is important to take advantage of AM and the advantages of casting. The fabrication methodology of the mould is binder jetting technique. The almost limitless design possibilities of additive manufacturing are applied to sand moulds for metal casting. A new methodology to optimise the design of sand moulds is proposed. This optimisation reduces the amount of sand to the minimal need, which corresponds to a shell. The shell is then parametrised to have a specific cooling rate. In this case, the cooling speed can vary via a modification of the coefficient of thermal conductivity and shell thickness. The cooling speed is correlated to the dendrite arm spacing, which determines the mechanical properties such as ultimate tensile strength and hardness. Simulations of the cooling support the mould design methodology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Welding in the World Springer Journals

Design methodology for variable shell mould thickness and thermal conductivity additively manufactured

Loading next page...
 
/lp/springer_journal/design-methodology-for-variable-shell-mould-thickness-and-thermal-QIbwylUGSu
Publisher
Springer Journals
Copyright
Copyright © 2018 by International Institute of Welding
Subject
Materials Science; Metallic Materials; Continuum Mechanics and Mechanics of Materials; Theoretical and Applied Mechanics
ISSN
0043-2288
eISSN
1878-6669
D.O.I.
10.1007/s40194-018-0598-2
Publisher site
See Article on Publisher Site

Abstract

Additive manufacturing (AM) is said to be the fourth industrial revolution disrupting the manufacturing industry. A focus on the foundry industry’s need, more specifically the sand casting process, is done. The usage of additive manufacturing in this field necessitates a different mould design approach. Indeed, it is important to take advantage of AM and the advantages of casting. The fabrication methodology of the mould is binder jetting technique. The almost limitless design possibilities of additive manufacturing are applied to sand moulds for metal casting. A new methodology to optimise the design of sand moulds is proposed. This optimisation reduces the amount of sand to the minimal need, which corresponds to a shell. The shell is then parametrised to have a specific cooling rate. In this case, the cooling speed can vary via a modification of the coefficient of thermal conductivity and shell thickness. The cooling speed is correlated to the dendrite arm spacing, which determines the mechanical properties such as ultimate tensile strength and hardness. Simulations of the cooling support the mould design methodology.

Journal

Welding in the WorldSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off