Design and performance evaluation of narrowband rectangular optical filter based on stimulated Brillouin scattering in fiber

Design and performance evaluation of narrowband rectangular optical filter based on stimulated... We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in fiber with tunable bandwidth from 50 MHz to 4 GHz at 15-MHz tuning resolution. The steep-edged rectangular shape of the filter is precisely controlled utilizing digital feedback compensation of the multi-tone pump light. The passband ripple is $$\sim $$ ∼ 1 dB by nonlinearity management of the pump light and using the fiber with a single Brillouin peak. The filter selectivity is improved to more than 40 dB by using pump-splitting dual-stage configuration. We analyze the noise performance of the proposed SBS filter and demonstrate a sub-band extraction of a multi-band orthogonal frequency division multiplexing (OFDM) signal. Furthermore, we validate the amplification performance with different gains for OFDM signal, which shows the potential capability of the filter in the fields of optical signal processing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Design and performance evaluation of narrowband rectangular optical filter based on stimulated Brillouin scattering in fiber

Loading next page...
 
/lp/springer_journal/design-and-performance-evaluation-of-narrowband-rectangular-optical-IJMJwe0Qs1
Publisher
Springer US
Copyright
Copyright © 2015 by The Author(s)
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0520-4
Publisher site
See Article on Publisher Site

Abstract

We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in fiber with tunable bandwidth from 50 MHz to 4 GHz at 15-MHz tuning resolution. The steep-edged rectangular shape of the filter is precisely controlled utilizing digital feedback compensation of the multi-tone pump light. The passband ripple is $$\sim $$ ∼ 1 dB by nonlinearity management of the pump light and using the fiber with a single Brillouin peak. The filter selectivity is improved to more than 40 dB by using pump-splitting dual-stage configuration. We analyze the noise performance of the proposed SBS filter and demonstrate a sub-band extraction of a multi-band orthogonal frequency division multiplexing (OFDM) signal. Furthermore, we validate the amplification performance with different gains for OFDM signal, which shows the potential capability of the filter in the fields of optical signal processing.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 4, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off