Design and Analysis of Low Noise Optimization Amplifier Using Reconfigurable Slotted Patch Antenna

Design and Analysis of Low Noise Optimization Amplifier Using Reconfigurable Slotted Patch Antenna This paper approaches a novel design theory of Low noise amplifier using reconfigurable rectangular shaped slotted patch antenna for 10.3–14 GHz receiver applications. In this approach, a Berkeley short-channel4 metal oxide field effect transistor (BSIM4, MOSFET) device is loaded in rectangular slotted patch antenna which results in wide band frequency of operation. To understand the design and analysis of low noise amplifier, an equivalent circuit model is extracted from the rectangular slotted patch antenna using finite element method (FEM) simulator where the slotted effect is considered. An extraction of equivalent model from the slotted patch antenna results in the L–C circuit which is used to perform an impedance transformation for low noise amplifier. A 12 GHz low noise amplifier using L–C circuit can improve performance parameters as per designer’s requirement. A reconfigurable MOS loaded slotted patch antenna is verified using momentum microwave simulator and a wide bandwidth of 9 GHz in the frequency range of 10.3–19.3 GHz is achieved. The Low noise amplifier is simulated with TSMC 0.09 µm mixed signal/RF CMOS process technology. The post-layout circuit simulation results show that the proposed common source LNA with L–C network achieves a maximum power gain of 20 dB with the −3 dB bandwidth from the range of 10.3–13.6 GHz. A reflection coefficient of −14 dB and minimum noise figure of 1.6 dB is achieved. The power dissipation is 2.5 mW at 1.2 V supply voltage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Design and Analysis of Low Noise Optimization Amplifier Using Reconfigurable Slotted Patch Antenna

Loading next page...
 
/lp/springer_journal/design-and-analysis-of-low-noise-optimization-amplifier-using-PqEPxi8Ljr
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4774-2
Publisher site
See Article on Publisher Site

Abstract

This paper approaches a novel design theory of Low noise amplifier using reconfigurable rectangular shaped slotted patch antenna for 10.3–14 GHz receiver applications. In this approach, a Berkeley short-channel4 metal oxide field effect transistor (BSIM4, MOSFET) device is loaded in rectangular slotted patch antenna which results in wide band frequency of operation. To understand the design and analysis of low noise amplifier, an equivalent circuit model is extracted from the rectangular slotted patch antenna using finite element method (FEM) simulator where the slotted effect is considered. An extraction of equivalent model from the slotted patch antenna results in the L–C circuit which is used to perform an impedance transformation for low noise amplifier. A 12 GHz low noise amplifier using L–C circuit can improve performance parameters as per designer’s requirement. A reconfigurable MOS loaded slotted patch antenna is verified using momentum microwave simulator and a wide bandwidth of 9 GHz in the frequency range of 10.3–19.3 GHz is achieved. The Low noise amplifier is simulated with TSMC 0.09 µm mixed signal/RF CMOS process technology. The post-layout circuit simulation results show that the proposed common source LNA with L–C network achieves a maximum power gain of 20 dB with the −3 dB bandwidth from the range of 10.3–13.6 GHz. A reflection coefficient of −14 dB and minimum noise figure of 1.6 dB is achieved. The power dissipation is 2.5 mW at 1.2 V supply voltage.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off