Design alternatives for N-stage WDM optical planar permutation networks

Design alternatives for N-stage WDM optical planar permutation networks Planar permutation networks are a class of multistage switching networks with no crossover between paths that interconnect switching elements. A well-known class of planar networks is the N−Stage network that provides a good compromise between the crossbar and the Benes network. In this paper, we address the problem of designing cost-effective N-Stage optical planar networks with space-wavelength switching capability. Such networks are used for switching in communication and computing systems that employ Wavelength Division Multiplexing (WDM) technology. We investigate two classes of space-wavelength N-stage planar networks, and for each class, we design a number of switching networks and analyze their hardware complexity. In addition, we propose a new method for designing a class of space-wavelength planar networks with reduced complexity. It is shown that, for F ≤  W (where F is the total number of fibers and W that of wavelengths) the proposed method results in planar networks with an average of 67% reduction in overall cost compared to that of networks based on fixed-range wavelength converters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Design alternatives for N-stage WDM optical planar permutation networks

Loading next page...
 
/lp/springer_journal/design-alternatives-for-n-stage-wdm-optical-planar-permutation-w7FPshSNHV
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0045-y
Publisher site
See Article on Publisher Site

Abstract

Planar permutation networks are a class of multistage switching networks with no crossover between paths that interconnect switching elements. A well-known class of planar networks is the N−Stage network that provides a good compromise between the crossbar and the Benes network. In this paper, we address the problem of designing cost-effective N-Stage optical planar networks with space-wavelength switching capability. Such networks are used for switching in communication and computing systems that employ Wavelength Division Multiplexing (WDM) technology. We investigate two classes of space-wavelength N-stage planar networks, and for each class, we design a number of switching networks and analyze their hardware complexity. In addition, we propose a new method for designing a class of space-wavelength planar networks with reduced complexity. It is shown that, for F ≤  W (where F is the total number of fibers and W that of wavelengths) the proposed method results in planar networks with an average of 67% reduction in overall cost compared to that of networks based on fixed-range wavelength converters.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 7, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off