Description of a new putative virus infecting the conifer pathogenic fungus Heterobasidion parviporum with resemblance to Heterobasidion annosum P-type partitivirus

Description of a new putative virus infecting the conifer pathogenic fungus Heterobasidion... The complete sequences of two double-stranded RNA segments from the fungus Heterobasidion parviporum were characterized. The larger segment (2,290 bp) contained an open reading frame encoding a putative RNA-dependent RNA polymerase (RdRp, 722 aa), while the smaller one (2,238 bp) encoded a putative coat protein of 659 aa. Based on phylogenetic analysis, the dsRNA segments constitute the genome of a new virus assigned to the family Partitiviridae and named Heterobasidion RNA virus 2 (HetRV2). The RdRp segment was clearly related to H. annosum P-type partitivirus (aa similarity of 59%) but was only distantly related to previously described viruses of H. parviporum (aa similarity 26–35%). The dsRNA could be experimentally transmitted to all five species of the Heterobasidion annosum sensu lato complex and two species of the H. insulare complex, indicating that horizontal transfer between these intersterile fungal species is possible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Description of a new putative virus infecting the conifer pathogenic fungus Heterobasidion parviporum with resemblance to Heterobasidion annosum P-type partitivirus

Loading next page...
 
/lp/springer_journal/description-of-a-new-putative-virus-infecting-the-conifer-pathogenic-mQcBXAXytB
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0823-9
Publisher site
See Article on Publisher Site

Abstract

The complete sequences of two double-stranded RNA segments from the fungus Heterobasidion parviporum were characterized. The larger segment (2,290 bp) contained an open reading frame encoding a putative RNA-dependent RNA polymerase (RdRp, 722 aa), while the smaller one (2,238 bp) encoded a putative coat protein of 659 aa. Based on phylogenetic analysis, the dsRNA segments constitute the genome of a new virus assigned to the family Partitiviridae and named Heterobasidion RNA virus 2 (HetRV2). The RdRp segment was clearly related to H. annosum P-type partitivirus (aa similarity of 59%) but was only distantly related to previously described viruses of H. parviporum (aa similarity 26–35%). The dsRNA could be experimentally transmitted to all five species of the Heterobasidion annosum sensu lato complex and two species of the H. insulare complex, indicating that horizontal transfer between these intersterile fungal species is possible.

Journal

Archives of VirologySpringer Journals

Published: Jan 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off