Derivation of Inhibitory Peptides to Target the Cardiac Troponin C–I Interaction as Potential Therapeutics for Heart Failure

Derivation of Inhibitory Peptides to Target the Cardiac Troponin C–I Interaction as Potential... The Ca2+-sensitive cardiac troponin (cTn) is a hetero-trimer complex consisting of three subunits cTnC, cTnI, and cTnT, which has been recognized as an important biomarker and a potential target of cardiovascular diseases. Previously, several small-molecule agents such as levosimendan and pimobendan have been successfully developed to target this protein for the treatment of heart failure. Here, instead of small-molecule chemical drugs, we purposed rational derivation of self-inhibitory peptides as potential biologic disruptors of cTnC–cTnI interaction from the interaction complex interface. In the procedure, the crystal structure of cTn trimer was examined in detail using bioinformatics approach, from which a peptide-mediated interaction between the N-terminal domain of cTnC and the switch region of cTnI was identified. The switch is a 19-mer peptide segment Swt that contains a structured helical core capped by a short N-terminal tripeptide and a disordered C-terminal tail. Structural and energetic analysis revealed that the Swt peptide binds independently to cTnC N-terminal domain, which can be stripped from the intact cTnI subunit to interact effectively with cTnC. Further investigations found that truncation of two N-terminal residues and five C-terminal residues of the full-length Swt peptide, resulting in a shortened version namely Swt-ΔN2ΔC5 peptide, would not cause substantial loss in its binding potency to cTnC. The computational finding was then confirmed by using fluorescence-based affinity assays; the Swt and Swt-ΔN2ΔC5 peptides was experimentally measured to have a moderately high affinity to the recombinant protein of human cTnC N-terminal domain with K d values at micromolar level. The Swt and Swt-ΔN2ΔC5 are considered as inhibitory peptides that can be further optimized and modified to obtain high-affinity disruptors of cTnI–cTnC interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Peptide Research and Therapeutics Springer Journals

Derivation of Inhibitory Peptides to Target the Cardiac Troponin C–I Interaction as Potential Therapeutics for Heart Failure

Loading next page...
 
/lp/springer_journal/derivation-of-inhibitory-peptides-to-target-the-cardiac-troponin-c-i-Bc5CWKMCLI
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Animal Anatomy / Morphology / Histology; Polymer Sciences; Pharmaceutical Sciences/Technology; Pharmacology/Toxicology; Molecular Medicine
ISSN
1573-3149
eISSN
1573-3904
D.O.I.
10.1007/s10989-017-9576-6
Publisher site
See Article on Publisher Site

Abstract

The Ca2+-sensitive cardiac troponin (cTn) is a hetero-trimer complex consisting of three subunits cTnC, cTnI, and cTnT, which has been recognized as an important biomarker and a potential target of cardiovascular diseases. Previously, several small-molecule agents such as levosimendan and pimobendan have been successfully developed to target this protein for the treatment of heart failure. Here, instead of small-molecule chemical drugs, we purposed rational derivation of self-inhibitory peptides as potential biologic disruptors of cTnC–cTnI interaction from the interaction complex interface. In the procedure, the crystal structure of cTn trimer was examined in detail using bioinformatics approach, from which a peptide-mediated interaction between the N-terminal domain of cTnC and the switch region of cTnI was identified. The switch is a 19-mer peptide segment Swt that contains a structured helical core capped by a short N-terminal tripeptide and a disordered C-terminal tail. Structural and energetic analysis revealed that the Swt peptide binds independently to cTnC N-terminal domain, which can be stripped from the intact cTnI subunit to interact effectively with cTnC. Further investigations found that truncation of two N-terminal residues and five C-terminal residues of the full-length Swt peptide, resulting in a shortened version namely Swt-ΔN2ΔC5 peptide, would not cause substantial loss in its binding potency to cTnC. The computational finding was then confirmed by using fluorescence-based affinity assays; the Swt and Swt-ΔN2ΔC5 peptides was experimentally measured to have a moderately high affinity to the recombinant protein of human cTnC N-terminal domain with K d values at micromolar level. The Swt and Swt-ΔN2ΔC5 are considered as inhibitory peptides that can be further optimized and modified to obtain high-affinity disruptors of cTnI–cTnC interaction.

Journal

International Journal of Peptide Research and TherapeuticsSpringer Journals

Published: Jan 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off