Derivation and Evaluation of a Risk-Scoring Tool to Predict Participant Attrition in a Lifestyle Intervention Project

Derivation and Evaluation of a Risk-Scoring Tool to Predict Participant Attrition in a Lifestyle... Participant attrition in clinical trials and community-based interventions is a serious, common, and costly problem. In order to develop a simple predictive scoring system that can quantify the risk of participant attrition in a lifestyle intervention project, we analyzed data from the Special Diabetes Program for Indians Diabetes Prevention Program (SDPI-DP), an evidence-based lifestyle intervention to prevent diabetes in 36 American Indian and Alaska Native communities. SDPI-DP participants were randomly divided into a derivation cohort (n = 1600) and a validation cohort (n = 801). Logistic regressions were used to develop a scoring system from the derivation cohort. The discriminatory power and calibration properties of the system were assessed using the validation cohort. Seven independent factors predicted program attrition: gender, age, household income, comorbidity, chronic pain, site’s user population size, and average age of site staff. Six factors predicted long-term attrition: gender, age, marital status, chronic pain, site’s user population size, and average age of site staff. Each model exhibited moderate to fair discriminatory power (C statistic in the validation set: 0.70 for program attrition, and 0.66 for long-term attrition) and excellent calibration. The resulting scoring system offers a low-technology approach to identify participants at elevated risk for attrition in future similar behavioral modification intervention projects, which may inform appropriate allocation of retention resources. This approach also serves as a model for other efforts to prevent participant attrition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Prevention Science Springer Journals

Derivation and Evaluation of a Risk-Scoring Tool to Predict Participant Attrition in a Lifestyle Intervention Project

Loading next page...
 
/lp/springer_journal/derivation-and-evaluation-of-a-risk-scoring-tool-to-predict-aSM0Gh8WeE
Publisher
Springer US
Copyright
Copyright © 2016 by Society for Prevention Research
Subject
Medicine & Public Health; Public Health; Health Psychology; Child and School Psychology
ISSN
1389-4986
eISSN
1573-6695
D.O.I.
10.1007/s11121-015-0628-x
Publisher site
See Article on Publisher Site

Abstract

Participant attrition in clinical trials and community-based interventions is a serious, common, and costly problem. In order to develop a simple predictive scoring system that can quantify the risk of participant attrition in a lifestyle intervention project, we analyzed data from the Special Diabetes Program for Indians Diabetes Prevention Program (SDPI-DP), an evidence-based lifestyle intervention to prevent diabetes in 36 American Indian and Alaska Native communities. SDPI-DP participants were randomly divided into a derivation cohort (n = 1600) and a validation cohort (n = 801). Logistic regressions were used to develop a scoring system from the derivation cohort. The discriminatory power and calibration properties of the system were assessed using the validation cohort. Seven independent factors predicted program attrition: gender, age, household income, comorbidity, chronic pain, site’s user population size, and average age of site staff. Six factors predicted long-term attrition: gender, age, marital status, chronic pain, site’s user population size, and average age of site staff. Each model exhibited moderate to fair discriminatory power (C statistic in the validation set: 0.70 for program attrition, and 0.66 for long-term attrition) and excellent calibration. The resulting scoring system offers a low-technology approach to identify participants at elevated risk for attrition in future similar behavioral modification intervention projects, which may inform appropriate allocation of retention resources. This approach also serves as a model for other efforts to prevent participant attrition.

Journal

Prevention ScienceSpringer Journals

Published: Jan 14, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off